Estimation of Thermoelectric Generator Performance by Finite Element Modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, E. Müller

ABSTRACT

Prediction of thermoelectric performance parameters by numerical methods is an inherent part of thermoelectric generator (TEG) development and allows for time- and cost-saving assessment of material combinations and variations of crucial design parameters (e.g., shape, pellet length, and thermal coupling). Considering the complexity of a TEG system and its numerous affecting factors, the clarity and the flexibility of a mathematical treatment comes to the fore. Comfortable tools are provided by commercial finite element modeling (FEM) software offering powerful geometry interfaces, mesh generators, solvers, and postprocessing options. We describe the level of development and the simulation results of a three dimensional (3D) TEG FEM. Using ANSYS 11.0, we implemented and simulated a TEG module geometry under various conditions. Comparative analytical one dimensional (1D) results and a direct comparison with inhouse-developed TEG simulation software show the consistency of results. Several pellet aspect ratios and contact property configurations (thermal/electrical interface resistance) were evaluated for their impact on the TEG performance as well as parasitic effects such as convection, radiation, and conductive heat bypass. The scenarios considered revealed the highest efficiency decay for convectionally loaded setups (up to 4.8%pts), followed by the impacts of contact resistances (up to 4.8%pts), by radiation (up to 0.56%pts), and by thermal conduction of a solid filling material within the voids of the module construction (up to 0.14%pts). More... »

PAGES

1934-1943

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-009-1048-0

DOI

http://dx.doi.org/10.1007/s11664-009-1048-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052941038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "German Aerospace Center", 
          "id": "https://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "German Aerospace Center (DLR), Institute of Materials Research, 51170, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziolkowski", 
        "givenName": "P.", 
        "id": "sg:person.07612010135.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612010135.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Space Research and Technology Centre", 
          "id": "https://www.grid.ac/institutes/grid.424669.b", 
          "name": [
            "European Space Agency (ESA), ESTEC, TEC-MCT Thermal and Environmental Control Section, Noordwijk, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poinas", 
        "givenName": "P.", 
        "id": "sg:person.016623070175.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623070175.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.473477.4", 
          "name": [
            "Ecole Nationale Superieure des Mines de Nancy, Laboratoire de Physique des Materiaux (LPM), Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leszczynski", 
        "givenName": "J.", 
        "id": "sg:person.014236037203.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014236037203.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Aerospace Center", 
          "id": "https://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "German Aerospace Center (DLR), Institute of Materials Research, 51170, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karpinski", 
        "givenName": "G.", 
        "id": "sg:person.010323412040.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010323412040.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Aerospace Center", 
          "id": "https://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "German Aerospace Center (DLR), Institute of Materials Research, 51170, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "E.", 
        "id": "sg:person.013746555371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013746555371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pssa.200723567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004346867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1689396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057763163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1735380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057801415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.148301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.148301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827332"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Prediction of thermoelectric performance parameters by numerical methods is an inherent part of thermoelectric generator (TEG) development and allows for time- and cost-saving assessment of material combinations and variations of crucial design parameters (e.g., shape, pellet length, and thermal coupling). Considering the complexity of a TEG system and its numerous affecting factors, the clarity and the flexibility of a mathematical treatment comes to the fore. Comfortable tools are provided by commercial finite element modeling (FEM) software offering powerful geometry interfaces, mesh generators, solvers, and postprocessing options. We describe the level of development and the simulation results of a three dimensional (3D) TEG FEM. Using ANSYS 11.0, we implemented and simulated a TEG module geometry under various conditions. Comparative analytical one dimensional (1D) results and a direct comparison with inhouse-developed TEG simulation software show the consistency of results. Several pellet aspect ratios and contact property configurations (thermal/electrical interface resistance) were evaluated for their impact on the TEG performance as well as parasitic effects such as convection, radiation, and conductive heat bypass. The scenarios considered revealed the highest efficiency decay for convectionally loaded setups (up to 4.8%pts), followed by the impacts of contact resistances (up to 4.8%pts), by radiation (up to 0.56%pts), and by thermal conduction of a solid filling material within the voids of the module construction (up to 0.14%pts).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-009-1048-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Estimation of Thermoelectric Generator Performance by Finite Element Modeling", 
    "pagination": "1934-1943", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fc2c411eafe5f1487c193cbf119c6763f5baee9c12babb9fe0368ab483bf243f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-009-1048-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052941038"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-009-1048-0", 
      "https://app.dimensions.ai/details/publication/pub.1052941038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11664-009-1048-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-009-1048-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-009-1048-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-009-1048-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-009-1048-0'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-009-1048-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na3a9e7f4095847279fc1862b008a6fc0
4 schema:citation https://doi.org/10.1002/pssa.200723567
5 https://doi.org/10.1063/1.1689396
6 https://doi.org/10.1063/1.1735380
7 https://doi.org/10.1103/physrevlett.91.148301
8 schema:datePublished 2010-09
9 schema:datePublishedReg 2010-09-01
10 schema:description Prediction of thermoelectric performance parameters by numerical methods is an inherent part of thermoelectric generator (TEG) development and allows for time- and cost-saving assessment of material combinations and variations of crucial design parameters (e.g., shape, pellet length, and thermal coupling). Considering the complexity of a TEG system and its numerous affecting factors, the clarity and the flexibility of a mathematical treatment comes to the fore. Comfortable tools are provided by commercial finite element modeling (FEM) software offering powerful geometry interfaces, mesh generators, solvers, and postprocessing options. We describe the level of development and the simulation results of a three dimensional (3D) TEG FEM. Using ANSYS 11.0, we implemented and simulated a TEG module geometry under various conditions. Comparative analytical one dimensional (1D) results and a direct comparison with inhouse-developed TEG simulation software show the consistency of results. Several pellet aspect ratios and contact property configurations (thermal/electrical interface resistance) were evaluated for their impact on the TEG performance as well as parasitic effects such as convection, radiation, and conductive heat bypass. The scenarios considered revealed the highest efficiency decay for convectionally loaded setups (up to 4.8%pts), followed by the impacts of contact resistances (up to 4.8%pts), by radiation (up to 0.56%pts), and by thermal conduction of a solid filling material within the voids of the module construction (up to 0.14%pts).
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N3e44e751809a4ae598d0bdcf1a3bd840
15 N6dd28991d18d45ab9a686079b3617631
16 sg:journal.1136213
17 schema:name Estimation of Thermoelectric Generator Performance by Finite Element Modeling
18 schema:pagination 1934-1943
19 schema:productId N015de431cff84191af6eadd704441bbb
20 Na000580c498d44e28b4ea2b185ee65be
21 Ndd2569ba8b48473c98bbbe64a3793bb1
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052941038
23 https://doi.org/10.1007/s11664-009-1048-0
24 schema:sdDatePublished 2019-04-11T10:04
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N32e943fe40824d2d9d5914258607e0bf
27 schema:url http://link.springer.com/10.1007%2Fs11664-009-1048-0
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N015de431cff84191af6eadd704441bbb schema:name readcube_id
32 schema:value fc2c411eafe5f1487c193cbf119c6763f5baee9c12babb9fe0368ab483bf243f
33 rdf:type schema:PropertyValue
34 N32e943fe40824d2d9d5914258607e0bf schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N3e44e751809a4ae598d0bdcf1a3bd840 schema:issueNumber 9
37 rdf:type schema:PublicationIssue
38 N3ec3c5b92617430d9045cace79f8245f rdf:first sg:person.016623070175.54
39 rdf:rest Nf5817877d5354610a36395122ee13b07
40 N4f0e7ee074134d60b283773ffce170d0 rdf:first sg:person.010323412040.86
41 rdf:rest Ncfc50621994b455db0b2d2629c0ba394
42 N6dd28991d18d45ab9a686079b3617631 schema:volumeNumber 39
43 rdf:type schema:PublicationVolume
44 Na000580c498d44e28b4ea2b185ee65be schema:name doi
45 schema:value 10.1007/s11664-009-1048-0
46 rdf:type schema:PropertyValue
47 Na3a9e7f4095847279fc1862b008a6fc0 rdf:first sg:person.07612010135.81
48 rdf:rest N3ec3c5b92617430d9045cace79f8245f
49 Ncfc50621994b455db0b2d2629c0ba394 rdf:first sg:person.013746555371.28
50 rdf:rest rdf:nil
51 Ndd2569ba8b48473c98bbbe64a3793bb1 schema:name dimensions_id
52 schema:value pub.1052941038
53 rdf:type schema:PropertyValue
54 Nf5817877d5354610a36395122ee13b07 rdf:first sg:person.014236037203.80
55 rdf:rest N4f0e7ee074134d60b283773ffce170d0
56 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
57 schema:name Information and Computing Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
60 schema:name Artificial Intelligence and Image Processing
61 rdf:type schema:DefinedTerm
62 sg:journal.1136213 schema:issn 0361-5235
63 1543-186X
64 schema:name Journal of Electronic Materials
65 rdf:type schema:Periodical
66 sg:person.010323412040.86 schema:affiliation https://www.grid.ac/institutes/grid.7551.6
67 schema:familyName Karpinski
68 schema:givenName G.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010323412040.86
70 rdf:type schema:Person
71 sg:person.013746555371.28 schema:affiliation https://www.grid.ac/institutes/grid.7551.6
72 schema:familyName Müller
73 schema:givenName E.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013746555371.28
75 rdf:type schema:Person
76 sg:person.014236037203.80 schema:affiliation https://www.grid.ac/institutes/grid.473477.4
77 schema:familyName Leszczynski
78 schema:givenName J.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014236037203.80
80 rdf:type schema:Person
81 sg:person.016623070175.54 schema:affiliation https://www.grid.ac/institutes/grid.424669.b
82 schema:familyName Poinas
83 schema:givenName P.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623070175.54
85 rdf:type schema:Person
86 sg:person.07612010135.81 schema:affiliation https://www.grid.ac/institutes/grid.7551.6
87 schema:familyName Ziolkowski
88 schema:givenName P.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612010135.81
90 rdf:type schema:Person
91 https://doi.org/10.1002/pssa.200723567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004346867
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.1689396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057763163
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.1735380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057801415
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.91.148301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827332
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.424669.b schema:alternateName European Space Research and Technology Centre
100 schema:name European Space Agency (ESA), ESTEC, TEC-MCT Thermal and Environmental Control Section, Noordwijk, The Netherlands
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.473477.4 schema:alternateName École Nationale Supérieure des Mines de Nancy
103 schema:name Ecole Nationale Superieure des Mines de Nancy, Laboratoire de Physique des Materiaux (LPM), Nancy, France
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.7551.6 schema:alternateName German Aerospace Center
106 schema:name German Aerospace Center (DLR), Institute of Materials Research, 51170, Cologne, Germany
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...