Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09-12

AUTHORS

Hu Hao, Yaowu Shi, Zhidong Xia, Yongping Lei, Fu Guo

ABSTRACT

In this work, we have systematically investigated the evolution of microstructure and of intermetallic compounds (IMCs), in particular, for lead-free SnAgCuEr solders during isothermal aging tests. The effect of trace amounts of the rare earth element Er on this process has also been studied. The results indicate that diffusion and reassembly occur in the solder matrix during the aging process, and the major influence of the rare earth element Er is concentrated on the nucleation sites. ErSn3 IMCs formed from the molten solder provide heterogeneous nucleation sites for the IMCs in the soldering and aging process. Subsequently, the Cu-Sn IMCs produced during soldering and Ag-Sn IMCs precipitated during the aging process have uniform size and evenly distribute in the solder matrix, and the refinement effect has been achieved in Er-containing solder joints. In addition, some cracks can be seen in Er-free solder joints, and the cracks may nucleate and propagate in the structure along the compound/solder boundaries after long aging times. More... »

PAGES

2-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9

DOI

http://dx.doi.org/10.1007/s11664-007-0263-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005614829


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1099", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Hu", 
        "id": "sg:person.011516552156.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516552156.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Yaowu", 
        "id": "sg:person.010147557037.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Zhidong", 
        "id": "sg:person.016447555263.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Yongping", 
        "id": "sg:person.012521025203.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fu", 
        "id": "sg:person.014627203474.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-003-0215-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044828523", 
          "https://doi.org/10.1007/s11664-003-0215-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-002-0052-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011569755", 
          "https://doi.org/10.1007/s11664-002-0052-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0202-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730360", 
          "https://doi.org/10.1007/s11661-998-0202-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-004-0023-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053359102", 
          "https://doi.org/10.1007/s11664-004-0023-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-12", 
    "datePublishedReg": "2007-09-12", 
    "description": "In this work, we have systematically investigated the evolution of microstructure and of intermetallic compounds (IMCs), in particular, for lead-free SnAgCuEr solders during isothermal aging tests. The effect of trace amounts of the rare earth element Er on this process has also been studied. The results indicate that diffusion and reassembly occur in the solder matrix during the aging process, and the major influence of the rare earth element Er is concentrated on the nucleation sites. ErSn3 IMCs formed from the molten solder provide heterogeneous nucleation sites for the IMCs in the soldering and aging process. Subsequently, the Cu-Sn IMCs produced during soldering and Ag-Sn IMCs precipitated during the aging process have uniform size and evenly distribute in the solder matrix, and the refinement effect has been achieved in Er-containing solder joints. In addition, some cracks can be seen in Er-free solder joints, and the cracks may nucleate and propagate in the structure along the compound/solder boundaries after long aging times.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-007-0263-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "intermetallic compounds", 
      "solder joints", 
      "solder matrix", 
      "lead-free solders", 
      "evolution of microstructure", 
      "nucleation sites", 
      "Cu-Sn intermetallic compounds", 
      "Ag-Sn intermetallic compounds", 
      "high temperature aging", 
      "heterogeneous nucleation sites", 
      "isothermal aging test", 
      "refinement effect", 
      "microstructure evolution", 
      "rare earth element Er", 
      "molten solder", 
      "temperature aging", 
      "solder", 
      "aging tests", 
      "element Er", 
      "soldering", 
      "cracks", 
      "uniform size", 
      "joints", 
      "microstructure", 
      "process", 
      "matrix", 
      "rare earth elements", 
      "major influence", 
      "diffusion", 
      "aging process", 
      "earth elements", 
      "boundaries", 
      "trace amounts", 
      "influence", 
      "structure", 
      "effect", 
      "work", 
      "evolution", 
      "test", 
      "size", 
      "elements", 
      "amount", 
      "results", 
      "aging", 
      "addition", 
      "time", 
      "compounds", 
      "sites", 
      "ER", 
      "lead-free SnAgCuEr solders", 
      "SnAgCuEr solders", 
      "earth element Er", 
      "ErSn3 IMCs", 
      "Er-free solder joints", 
      "compound/solder boundaries", 
      "solder boundaries", 
      "SnAgCuEr Lead-free Solders"
    ], 
    "name": "Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging", 
    "pagination": "2-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005614829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-007-0263-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-007-0263-9", 
      "https://app.dimensions.ai/details/publication/pub.1005614829"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_439.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-007-0263-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      90 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-007-0263-9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:09
4 anzsrc-for:0906
5 anzsrc-for:10
6 anzsrc-for:1099
7 schema:author Ndfe568168b7945f99b05ee158c46d9df
8 schema:citation sg:pub.10.1007/s11661-998-0202-2
9 sg:pub.10.1007/s11664-002-0052-4
10 sg:pub.10.1007/s11664-003-0215-y
11 sg:pub.10.1007/s11664-004-0023-z
12 schema:datePublished 2007-09-12
13 schema:datePublishedReg 2007-09-12
14 schema:description In this work, we have systematically investigated the evolution of microstructure and of intermetallic compounds (IMCs), in particular, for lead-free SnAgCuEr solders during isothermal aging tests. The effect of trace amounts of the rare earth element Er on this process has also been studied. The results indicate that diffusion and reassembly occur in the solder matrix during the aging process, and the major influence of the rare earth element Er is concentrated on the nucleation sites. ErSn3 IMCs formed from the molten solder provide heterogeneous nucleation sites for the IMCs in the soldering and aging process. Subsequently, the Cu-Sn IMCs produced during soldering and Ag-Sn IMCs precipitated during the aging process have uniform size and evenly distribute in the solder matrix, and the refinement effect has been achieved in Er-containing solder joints. In addition, some cracks can be seen in Er-free solder joints, and the cracks may nucleate and propagate in the structure along the compound/solder boundaries after long aging times.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2045220a0c724da8a5b241fe2d9fed9a
19 Nfcf93027ce454db1b35b7ce46c96820b
20 sg:journal.1136213
21 schema:keywords Ag-Sn intermetallic compounds
22 Cu-Sn intermetallic compounds
23 ER
24 Er-free solder joints
25 ErSn3 IMCs
26 SnAgCuEr Lead-free Solders
27 SnAgCuEr solders
28 addition
29 aging
30 aging process
31 aging tests
32 amount
33 boundaries
34 compound/solder boundaries
35 compounds
36 cracks
37 diffusion
38 earth element Er
39 earth elements
40 effect
41 element Er
42 elements
43 evolution
44 evolution of microstructure
45 heterogeneous nucleation sites
46 high temperature aging
47 influence
48 intermetallic compounds
49 isothermal aging test
50 joints
51 lead-free SnAgCuEr solders
52 lead-free solders
53 major influence
54 matrix
55 microstructure
56 microstructure evolution
57 molten solder
58 nucleation sites
59 process
60 rare earth element Er
61 rare earth elements
62 refinement effect
63 results
64 sites
65 size
66 solder
67 solder boundaries
68 solder joints
69 solder matrix
70 soldering
71 structure
72 temperature aging
73 test
74 time
75 trace amounts
76 uniform size
77 work
78 schema:name Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging
79 schema:pagination 2-8
80 schema:productId N7b11dbc5989041c4b9eaef1030707f58
81 Na838259f3a1442fcab54307da6d0092f
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005614829
83 https://doi.org/10.1007/s11664-007-0263-9
84 schema:sdDatePublished 2021-11-01T18:09
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N234c5e8af74247bf9811550918a06aee
87 schema:url https://doi.org/10.1007/s11664-007-0263-9
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0b5fe0fb6e574525990cad550541241b rdf:first sg:person.014627203474.59
92 rdf:rest rdf:nil
93 N2045220a0c724da8a5b241fe2d9fed9a schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N234c5e8af74247bf9811550918a06aee schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N5e16d389dce14ecf9a99e6abd9e67c55 rdf:first sg:person.010147557037.66
98 rdf:rest Nb8b320c9ab3e43ce9d62d94b5fe7a257
99 N750a3963eeb44ca7bba6710c34c68d88 rdf:first sg:person.012521025203.12
100 rdf:rest N0b5fe0fb6e574525990cad550541241b
101 N7b11dbc5989041c4b9eaef1030707f58 schema:name dimensions_id
102 schema:value pub.1005614829
103 rdf:type schema:PropertyValue
104 Na838259f3a1442fcab54307da6d0092f schema:name doi
105 schema:value 10.1007/s11664-007-0263-9
106 rdf:type schema:PropertyValue
107 Nb8b320c9ab3e43ce9d62d94b5fe7a257 rdf:first sg:person.016447555263.38
108 rdf:rest N750a3963eeb44ca7bba6710c34c68d88
109 Ndfe568168b7945f99b05ee158c46d9df rdf:first sg:person.011516552156.37
110 rdf:rest N5e16d389dce14ecf9a99e6abd9e67c55
111 Nfcf93027ce454db1b35b7ce46c96820b schema:volumeNumber 37
112 rdf:type schema:PublicationVolume
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
123 schema:name Electrical and Electronic Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
126 schema:name Technology
127 rdf:type schema:DefinedTerm
128 anzsrc-for:1099 schema:inDefinedTermSet anzsrc-for:
129 schema:name Other Technology
130 rdf:type schema:DefinedTerm
131 sg:journal.1136213 schema:issn 0361-5235
132 1543-186X
133 schema:name Journal of Electronic Materials
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.010147557037.66 schema:affiliation grid-institutes:grid.28703.3e
137 schema:familyName Shi
138 schema:givenName Yaowu
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66
140 rdf:type schema:Person
141 sg:person.011516552156.37 schema:affiliation grid-institutes:grid.28703.3e
142 schema:familyName Hao
143 schema:givenName Hu
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516552156.37
145 rdf:type schema:Person
146 sg:person.012521025203.12 schema:affiliation grid-institutes:grid.28703.3e
147 schema:familyName Lei
148 schema:givenName Yongping
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12
150 rdf:type schema:Person
151 sg:person.014627203474.59 schema:affiliation grid-institutes:grid.28703.3e
152 schema:familyName Guo
153 schema:givenName Fu
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59
155 rdf:type schema:Person
156 sg:person.016447555263.38 schema:affiliation grid-institutes:grid.28703.3e
157 schema:familyName Xia
158 schema:givenName Zhidong
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38
160 rdf:type schema:Person
161 sg:pub.10.1007/s11661-998-0202-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730360
162 https://doi.org/10.1007/s11661-998-0202-2
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11664-002-0052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011569755
165 https://doi.org/10.1007/s11664-002-0052-4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11664-003-0215-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044828523
168 https://doi.org/10.1007/s11664-003-0215-y
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11664-004-0023-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053359102
171 https://doi.org/10.1007/s11664-004-0023-z
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.28703.3e schema:alternateName School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People’s Republic of China
174 schema:name School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People’s Republic of China
175 The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People’s Republic of China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...