Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09-12

AUTHORS

Hu Hao, Yaowu Shi, Zhidong Xia, Yongping Lei, Fu Guo

ABSTRACT

In this work, we have systematically investigated the evolution of microstructure and of intermetallic compounds (IMCs), in particular, for lead-free SnAgCuEr solders during isothermal aging tests. The effect of trace amounts of the rare earth element Er on this process has also been studied. The results indicate that diffusion and reassembly occur in the solder matrix during the aging process, and the major influence of the rare earth element Er is concentrated on the nucleation sites. ErSn3 IMCs formed from the molten solder provide heterogeneous nucleation sites for the IMCs in the soldering and aging process. Subsequently, the Cu-Sn IMCs produced during soldering and Ag-Sn IMCs precipitated during the aging process have uniform size and evenly distribute in the solder matrix, and the refinement effect has been achieved in Er-containing solder joints. In addition, some cracks can be seen in Er-free solder joints, and the cracks may nucleate and propagate in the structure along the compound/solder boundaries after long aging times. More... »

PAGES

2-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9

DOI

http://dx.doi.org/10.1007/s11664-007-0263-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005614829


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1099", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Hu", 
        "id": "sg:person.011516552156.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516552156.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Yaowu", 
        "id": "sg:person.010147557037.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Zhidong", 
        "id": "sg:person.016447555263.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Yongping", 
        "id": "sg:person.012521025203.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fu", 
        "id": "sg:person.014627203474.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-002-0052-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011569755", 
          "https://doi.org/10.1007/s11664-002-0052-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-004-0023-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053359102", 
          "https://doi.org/10.1007/s11664-004-0023-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-003-0215-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044828523", 
          "https://doi.org/10.1007/s11664-003-0215-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0202-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730360", 
          "https://doi.org/10.1007/s11661-998-0202-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-12", 
    "datePublishedReg": "2007-09-12", 
    "description": "In this work, we have systematically investigated the evolution of microstructure and of intermetallic compounds (IMCs), in particular, for lead-free SnAgCuEr solders during isothermal aging tests. The effect of trace amounts of the rare earth element Er on this process has also been studied. The results indicate that diffusion and reassembly occur in the solder matrix during the aging process, and the major influence of the rare earth element Er is concentrated on the nucleation sites. ErSn3 IMCs formed from the molten solder provide heterogeneous nucleation sites for the IMCs in the soldering and aging process. Subsequently, the Cu-Sn IMCs produced during soldering and Ag-Sn IMCs precipitated during the aging process have uniform size and evenly distribute in the solder matrix, and the refinement effect has been achieved in Er-containing solder joints. In addition, some cracks can be seen in Er-free solder joints, and the cracks may nucleate and propagate in the structure along the compound/solder boundaries after long aging times.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-007-0263-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "intermetallic compounds", 
      "solder joints", 
      "solder matrix", 
      "lead-free solders", 
      "evolution of microstructure", 
      "nucleation sites", 
      "Cu-Sn intermetallic compounds", 
      "Ag-Sn intermetallic compounds", 
      "high temperature aging", 
      "heterogeneous nucleation sites", 
      "isothermal aging test", 
      "refinement effect", 
      "microstructure evolution", 
      "rare earth element Er", 
      "molten solder", 
      "temperature aging", 
      "solder", 
      "aging tests", 
      "element Er", 
      "soldering", 
      "cracks", 
      "uniform size", 
      "joints", 
      "microstructure", 
      "process", 
      "matrix", 
      "rare earth elements", 
      "major influence", 
      "diffusion", 
      "aging process", 
      "earth elements", 
      "boundaries", 
      "trace amounts", 
      "influence", 
      "structure", 
      "effect", 
      "work", 
      "evolution", 
      "test", 
      "size", 
      "elements", 
      "amount", 
      "results", 
      "aging", 
      "addition", 
      "time", 
      "compounds", 
      "sites", 
      "ER", 
      "lead-free SnAgCuEr solders", 
      "SnAgCuEr solders", 
      "earth element Er", 
      "ErSn3 IMCs", 
      "Er-free solder joints", 
      "compound/solder boundaries", 
      "solder boundaries", 
      "SnAgCuEr Lead-free Solders"
    ], 
    "name": "Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging", 
    "pagination": "2-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005614829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-007-0263-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-007-0263-9", 
      "https://app.dimensions.ai/details/publication/pub.1005614829"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_446.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-007-0263-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0263-9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      90 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-007-0263-9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:09
4 anzsrc-for:0906
5 anzsrc-for:10
6 anzsrc-for:1099
7 schema:author Nd72a27dfa47944d58c31f29c06e087a5
8 schema:citation sg:pub.10.1007/s11661-998-0202-2
9 sg:pub.10.1007/s11664-002-0052-4
10 sg:pub.10.1007/s11664-003-0215-y
11 sg:pub.10.1007/s11664-004-0023-z
12 schema:datePublished 2007-09-12
13 schema:datePublishedReg 2007-09-12
14 schema:description In this work, we have systematically investigated the evolution of microstructure and of intermetallic compounds (IMCs), in particular, for lead-free SnAgCuEr solders during isothermal aging tests. The effect of trace amounts of the rare earth element Er on this process has also been studied. The results indicate that diffusion and reassembly occur in the solder matrix during the aging process, and the major influence of the rare earth element Er is concentrated on the nucleation sites. ErSn3 IMCs formed from the molten solder provide heterogeneous nucleation sites for the IMCs in the soldering and aging process. Subsequently, the Cu-Sn IMCs produced during soldering and Ag-Sn IMCs precipitated during the aging process have uniform size and evenly distribute in the solder matrix, and the refinement effect has been achieved in Er-containing solder joints. In addition, some cracks can be seen in Er-free solder joints, and the cracks may nucleate and propagate in the structure along the compound/solder boundaries after long aging times.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N559d86fa86b34a77a270982377aeb836
19 Nb9434a231a604f3da4b9734517f0a6b4
20 sg:journal.1136213
21 schema:keywords Ag-Sn intermetallic compounds
22 Cu-Sn intermetallic compounds
23 ER
24 Er-free solder joints
25 ErSn3 IMCs
26 SnAgCuEr Lead-free Solders
27 SnAgCuEr solders
28 addition
29 aging
30 aging process
31 aging tests
32 amount
33 boundaries
34 compound/solder boundaries
35 compounds
36 cracks
37 diffusion
38 earth element Er
39 earth elements
40 effect
41 element Er
42 elements
43 evolution
44 evolution of microstructure
45 heterogeneous nucleation sites
46 high temperature aging
47 influence
48 intermetallic compounds
49 isothermal aging test
50 joints
51 lead-free SnAgCuEr solders
52 lead-free solders
53 major influence
54 matrix
55 microstructure
56 microstructure evolution
57 molten solder
58 nucleation sites
59 process
60 rare earth element Er
61 rare earth elements
62 refinement effect
63 results
64 sites
65 size
66 solder
67 solder boundaries
68 solder joints
69 solder matrix
70 soldering
71 structure
72 temperature aging
73 test
74 time
75 trace amounts
76 uniform size
77 work
78 schema:name Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging
79 schema:pagination 2-8
80 schema:productId N691083c8963e4b4ea9c6def70f9bb5dc
81 Nfcf92b8a7208492cbb6ce4c781c14389
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005614829
83 https://doi.org/10.1007/s11664-007-0263-9
84 schema:sdDatePublished 2022-01-01T18:17
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N0bc054c0c98c4f4d9c4299badc12bc42
87 schema:url https://doi.org/10.1007/s11664-007-0263-9
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0bc054c0c98c4f4d9c4299badc12bc42 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N0c5b05a730634d30830e8ad0cfc6f2fc rdf:first sg:person.012521025203.12
94 rdf:rest N392794ac75f14f9da9dce7c43e9925d3
95 N392794ac75f14f9da9dce7c43e9925d3 rdf:first sg:person.014627203474.59
96 rdf:rest rdf:nil
97 N51e8717b30f74cf9942592c30e161181 rdf:first sg:person.010147557037.66
98 rdf:rest N8657ff91ffd14e6b9b2085437d77540b
99 N559d86fa86b34a77a270982377aeb836 schema:volumeNumber 37
100 rdf:type schema:PublicationVolume
101 N691083c8963e4b4ea9c6def70f9bb5dc schema:name doi
102 schema:value 10.1007/s11664-007-0263-9
103 rdf:type schema:PropertyValue
104 N8657ff91ffd14e6b9b2085437d77540b rdf:first sg:person.016447555263.38
105 rdf:rest N0c5b05a730634d30830e8ad0cfc6f2fc
106 Nb9434a231a604f3da4b9734517f0a6b4 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Nd72a27dfa47944d58c31f29c06e087a5 rdf:first sg:person.011516552156.37
109 rdf:rest N51e8717b30f74cf9942592c30e161181
110 Nfcf92b8a7208492cbb6ce4c781c14389 schema:name dimensions_id
111 schema:value pub.1005614829
112 rdf:type schema:PropertyValue
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
123 schema:name Electrical and Electronic Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
126 schema:name Technology
127 rdf:type schema:DefinedTerm
128 anzsrc-for:1099 schema:inDefinedTermSet anzsrc-for:
129 schema:name Other Technology
130 rdf:type schema:DefinedTerm
131 sg:journal.1136213 schema:issn 0361-5235
132 1543-186X
133 schema:name Journal of Electronic Materials
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.010147557037.66 schema:affiliation grid-institutes:grid.28703.3e
137 schema:familyName Shi
138 schema:givenName Yaowu
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66
140 rdf:type schema:Person
141 sg:person.011516552156.37 schema:affiliation grid-institutes:grid.28703.3e
142 schema:familyName Hao
143 schema:givenName Hu
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516552156.37
145 rdf:type schema:Person
146 sg:person.012521025203.12 schema:affiliation grid-institutes:grid.28703.3e
147 schema:familyName Lei
148 schema:givenName Yongping
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12
150 rdf:type schema:Person
151 sg:person.014627203474.59 schema:affiliation grid-institutes:grid.28703.3e
152 schema:familyName Guo
153 schema:givenName Fu
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59
155 rdf:type schema:Person
156 sg:person.016447555263.38 schema:affiliation grid-institutes:grid.28703.3e
157 schema:familyName Xia
158 schema:givenName Zhidong
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38
160 rdf:type schema:Person
161 sg:pub.10.1007/s11661-998-0202-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730360
162 https://doi.org/10.1007/s11661-998-0202-2
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11664-002-0052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011569755
165 https://doi.org/10.1007/s11664-002-0052-4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11664-003-0215-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044828523
168 https://doi.org/10.1007/s11664-003-0215-y
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11664-004-0023-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053359102
171 https://doi.org/10.1007/s11664-004-0023-z
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.28703.3e schema:alternateName School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People’s Republic of China
174 schema:name School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, People’s Republic of China
175 The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, People’s Republic of China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...