Creep Properties of Composite Solders Reinforced with Nano- and Microsized Particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10-26

AUTHORS

Yaowu Shi, Jianping Liu, Yanfu Yan, Zhidong Xia, Yongping Lei, Fu Guo, Xiaoyan Li

ABSTRACT

In the present work the creep properties of Sn37Pb- and Sn0.7Cu-based composite solders reinforced with metallic nano- and microsized Cu and Ag particles have been studied. First, a series of volume percentages of reinforcements were selected to optimize the content of reinforcing particles. Then, the composite solder with optimum volume fraction of reinforcement particles, corresponding to the maximum creep rupture lifetime, was selected to investigate the effect of applied stress and temperature on the creep rupture lifetime of the composite solder joints. In the creep rupture lifetime test, small single-lap tensile-shear joints were adopted. The results indicate that composite solders reinforced with microsized particles exhibit better creep strengthening than composite solders reinforced with nanosized particles, although the mechanical tensile shear strength of composite solder joints reinforced with nanosized particles may be higher than those reinforced with microsized particles. Moreover, the creep strengthening action of the reinforcement particles is more obvious under conditions of lower applied stress or lower test temperature. Strengthening by metallic Cu or Ag reinforcement particles decreases with increasing temperature or applied stress. The Sn0.7Cu-based composite solder reinforced with microsized Ag particles is a low-cost lead-free solder that is easy to process and may have good market potential. More... »

PAGES

507-514

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-007-0208-3

DOI

http://dx.doi.org/10.1007/s11664-007-0208-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009114010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Yaowu", 
        "id": "sg:person.010147557037.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jianping", 
        "id": "sg:person.012406632313.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406632313.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Yanfu", 
        "id": "sg:person.07420730313.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420730313.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Zhidong", 
        "id": "sg:person.016447555263.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Yongping", 
        "id": "sg:person.012521025203.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fu", 
        "id": "sg:person.014627203474.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaoyan", 
        "id": "sg:person.014361463331.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361463331.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011264527894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018608821", 
          "https://doi.org/10.1023/a:1011264527894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01141557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053552629", 
          "https://doi.org/10.1007/bf01141557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-001-0132-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006237014", 
          "https://doi.org/10.1007/s11664-001-0132-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-004-0022-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031994706", 
          "https://doi.org/10.1007/s11664-004-0022-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-005-0197-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038707430", 
          "https://doi.org/10.1007/s11664-005-0197-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-998-0072-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009785954", 
          "https://doi.org/10.1007/s11664-998-0072-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-006-9019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042742091", 
          "https://doi.org/10.1007/s10854-006-9019-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10-26", 
    "datePublishedReg": "2007-10-26", 
    "description": "In the present work the creep properties of Sn37Pb- and Sn0.7Cu-based composite solders reinforced with metallic nano- and microsized Cu and Ag particles have been studied. First, a series of volume percentages of reinforcements were selected to optimize the content of reinforcing particles. Then, the composite solder with optimum volume fraction of reinforcement particles, corresponding to the maximum creep rupture lifetime, was selected to investigate the effect of applied stress and temperature on the creep rupture lifetime of the composite solder joints. In the creep rupture lifetime test, small single-lap tensile-shear joints were adopted. The results indicate that composite solders reinforced with microsized particles exhibit better creep strengthening than composite solders reinforced with nanosized particles, although the mechanical tensile shear strength of composite solder joints reinforced with nanosized particles may be higher than those reinforced with microsized particles. Moreover, the creep strengthening action of the reinforcement particles is more obvious under conditions of lower applied stress or lower test temperature. Strengthening by metallic Cu or Ag reinforcement particles decreases with increasing temperature or applied stress. The Sn0.7Cu-based composite solder reinforced with microsized Ag particles is a low-cost lead-free solder that is easy to process and may have good market potential.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-007-0208-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "composite solder", 
      "composite solder joints", 
      "creep rupture lifetime", 
      "reinforcement particles", 
      "applied stress", 
      "solder joints", 
      "low-cost lead-free solders", 
      "microsized particles", 
      "rupture lifetime", 
      "lead-free solders", 
      "optimum volume fraction", 
      "tensile shear strength", 
      "low applied stress", 
      "lower test temperatures", 
      "creep strengthening", 
      "creep properties", 
      "shear strength", 
      "metallic nano", 
      "test temperature", 
      "solder", 
      "volume fraction", 
      "Ag particles", 
      "Ag reinforcement", 
      "volume percentage", 
      "lifetime tests", 
      "metallic Cu", 
      "particles", 
      "nano", 
      "reinforcement", 
      "present work", 
      "joints", 
      "temperature", 
      "good market potential", 
      "Sn37Pb", 
      "creep", 
      "stress", 
      "properties", 
      "market potential", 
      "Cu", 
      "strengthening", 
      "strength", 
      "lifetime", 
      "Ag", 
      "conditions", 
      "work", 
      "test", 
      "content", 
      "fraction", 
      "results", 
      "potential", 
      "effect", 
      "series", 
      "percentage", 
      "action", 
      "maximum creep rupture lifetime", 
      "creep rupture lifetime test", 
      "rupture lifetime test", 
      "small single-lap tensile-shear joints", 
      "single-lap tensile-shear joints", 
      "tensile-shear joints", 
      "better creep strengthening", 
      "mechanical tensile shear strength", 
      "microsized Ag"
    ], 
    "name": "Creep Properties of Composite Solders Reinforced with Nano- and Microsized Particles", 
    "pagination": "507-514", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009114010"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-007-0208-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-007-0208-3", 
      "https://app.dimensions.ai/details/publication/pub.1009114010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_438.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-007-0208-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0208-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0208-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0208-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-007-0208-3'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      95 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-007-0208-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc866a32c9bb545c88b5fda8df12b2760
4 schema:citation sg:pub.10.1007/bf01141557
5 sg:pub.10.1007/s10854-006-9019-1
6 sg:pub.10.1007/s11664-001-0132-x
7 sg:pub.10.1007/s11664-004-0022-0
8 sg:pub.10.1007/s11664-005-0197-z
9 sg:pub.10.1007/s11664-998-0072-9
10 sg:pub.10.1023/a:1011264527894
11 schema:datePublished 2007-10-26
12 schema:datePublishedReg 2007-10-26
13 schema:description In the present work the creep properties of Sn37Pb- and Sn0.7Cu-based composite solders reinforced with metallic nano- and microsized Cu and Ag particles have been studied. First, a series of volume percentages of reinforcements were selected to optimize the content of reinforcing particles. Then, the composite solder with optimum volume fraction of reinforcement particles, corresponding to the maximum creep rupture lifetime, was selected to investigate the effect of applied stress and temperature on the creep rupture lifetime of the composite solder joints. In the creep rupture lifetime test, small single-lap tensile-shear joints were adopted. The results indicate that composite solders reinforced with microsized particles exhibit better creep strengthening than composite solders reinforced with nanosized particles, although the mechanical tensile shear strength of composite solder joints reinforced with nanosized particles may be higher than those reinforced with microsized particles. Moreover, the creep strengthening action of the reinforcement particles is more obvious under conditions of lower applied stress or lower test temperature. Strengthening by metallic Cu or Ag reinforcement particles decreases with increasing temperature or applied stress. The Sn0.7Cu-based composite solder reinforced with microsized Ag particles is a low-cost lead-free solder that is easy to process and may have good market potential.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N2f0c96ecb97c421db954390aede0aaed
18 N4356082c49c04f5f837c9bf7fe5c9b0d
19 sg:journal.1136213
20 schema:keywords Ag
21 Ag particles
22 Ag reinforcement
23 Cu
24 Sn37Pb
25 action
26 applied stress
27 better creep strengthening
28 composite solder
29 composite solder joints
30 conditions
31 content
32 creep
33 creep properties
34 creep rupture lifetime
35 creep rupture lifetime test
36 creep strengthening
37 effect
38 fraction
39 good market potential
40 joints
41 lead-free solders
42 lifetime
43 lifetime tests
44 low applied stress
45 low-cost lead-free solders
46 lower test temperatures
47 market potential
48 maximum creep rupture lifetime
49 mechanical tensile shear strength
50 metallic Cu
51 metallic nano
52 microsized Ag
53 microsized particles
54 nano
55 optimum volume fraction
56 particles
57 percentage
58 potential
59 present work
60 properties
61 reinforcement
62 reinforcement particles
63 results
64 rupture lifetime
65 rupture lifetime test
66 series
67 shear strength
68 single-lap tensile-shear joints
69 small single-lap tensile-shear joints
70 solder
71 solder joints
72 strength
73 strengthening
74 stress
75 temperature
76 tensile shear strength
77 tensile-shear joints
78 test
79 test temperature
80 volume fraction
81 volume percentage
82 work
83 schema:name Creep Properties of Composite Solders Reinforced with Nano- and Microsized Particles
84 schema:pagination 507-514
85 schema:productId N971c557728e340b68d48ba7a3c7a3277
86 Nc6c10382d09947d88fa92b4a7728c6fa
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009114010
88 https://doi.org/10.1007/s11664-007-0208-3
89 schema:sdDatePublished 2021-11-01T18:10
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N72ed77758abb4a2bae5dd8a1799d2c45
92 schema:url https://doi.org/10.1007/s11664-007-0208-3
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0532d3faf0114acd8d9e69c581f75565 rdf:first sg:person.012521025203.12
97 rdf:rest N173524a82fd44ad9a37048f1f34a742b
98 N173524a82fd44ad9a37048f1f34a742b rdf:first sg:person.014627203474.59
99 rdf:rest N6ac07df73ff940f19a6b5d8d028f000f
100 N2f0c96ecb97c421db954390aede0aaed schema:volumeNumber 37
101 rdf:type schema:PublicationVolume
102 N4356082c49c04f5f837c9bf7fe5c9b0d schema:issueNumber 4
103 rdf:type schema:PublicationIssue
104 N6ac07df73ff940f19a6b5d8d028f000f rdf:first sg:person.014361463331.82
105 rdf:rest rdf:nil
106 N72ed77758abb4a2bae5dd8a1799d2c45 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N8049f9093756402c8c2f5bd679c9bf01 rdf:first sg:person.07420730313.80
109 rdf:rest N9c16fba54de248a0874e41ff6caa5cea
110 N971c557728e340b68d48ba7a3c7a3277 schema:name dimensions_id
111 schema:value pub.1009114010
112 rdf:type schema:PropertyValue
113 N9c16fba54de248a0874e41ff6caa5cea rdf:first sg:person.016447555263.38
114 rdf:rest N0532d3faf0114acd8d9e69c581f75565
115 Nc6c10382d09947d88fa92b4a7728c6fa schema:name doi
116 schema:value 10.1007/s11664-007-0208-3
117 rdf:type schema:PropertyValue
118 Nc866a32c9bb545c88b5fda8df12b2760 rdf:first sg:person.010147557037.66
119 rdf:rest Nebd49ef9ed1e4c44b2d33dad7080ce6e
120 Nebd49ef9ed1e4c44b2d33dad7080ce6e rdf:first sg:person.012406632313.23
121 rdf:rest N8049f9093756402c8c2f5bd679c9bf01
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
126 schema:name Materials Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1136213 schema:issn 0361-5235
129 1543-186X
130 schema:name Journal of Electronic Materials
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.010147557037.66 schema:affiliation grid-institutes:grid.28703.3e
134 schema:familyName Shi
135 schema:givenName Yaowu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66
137 rdf:type schema:Person
138 sg:person.012406632313.23 schema:affiliation grid-institutes:grid.28703.3e
139 schema:familyName Liu
140 schema:givenName Jianping
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406632313.23
142 rdf:type schema:Person
143 sg:person.012521025203.12 schema:affiliation grid-institutes:grid.28703.3e
144 schema:familyName Lei
145 schema:givenName Yongping
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12
147 rdf:type schema:Person
148 sg:person.014361463331.82 schema:affiliation grid-institutes:grid.28703.3e
149 schema:familyName Li
150 schema:givenName Xiaoyan
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361463331.82
152 rdf:type schema:Person
153 sg:person.014627203474.59 schema:affiliation grid-institutes:grid.28703.3e
154 schema:familyName Guo
155 schema:givenName Fu
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59
157 rdf:type schema:Person
158 sg:person.016447555263.38 schema:affiliation grid-institutes:grid.28703.3e
159 schema:familyName Xia
160 schema:givenName Zhidong
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38
162 rdf:type schema:Person
163 sg:person.07420730313.80 schema:affiliation grid-institutes:grid.28703.3e
164 schema:familyName Yan
165 schema:givenName Yanfu
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420730313.80
167 rdf:type schema:Person
168 sg:pub.10.1007/bf01141557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552629
169 https://doi.org/10.1007/bf01141557
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10854-006-9019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042742091
172 https://doi.org/10.1007/s10854-006-9019-1
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11664-001-0132-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006237014
175 https://doi.org/10.1007/s11664-001-0132-x
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11664-004-0022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031994706
178 https://doi.org/10.1007/s11664-004-0022-0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11664-005-0197-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038707430
181 https://doi.org/10.1007/s11664-005-0197-z
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11664-998-0072-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785954
184 https://doi.org/10.1007/s11664-998-0072-9
185 rdf:type schema:CreativeWork
186 sg:pub.10.1023/a:1011264527894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018608821
187 https://doi.org/10.1023/a:1011264527894
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.28703.3e schema:alternateName School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China
190 schema:name School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, PR China
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...