Effect of rare earth element additions on the microstructure and mechanical properties of tin-silver-bismuth solder View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-06

AUTHORS

Zhidong Xia, Zhigang Chen, Yaowu Shi, Nan Mu, Na Sun

ABSTRACT

There are numerous intermetallic compounds (IMCs) with various shapes in a tin-silver-bismuth solder alloy. These IMCs can affect the mechanical properties of the solder and, therefore, the reliability of the joints. In this study, minimal rare earth elements added into the solder were adsorbed at the grain boundary of IMCs. This adsorption behavior changed the relationship between growth velocities of the various crystalline directions of the IMC polycrystalline, which resulted in finer particles and more uniform distribution of the IMC phase. The average size of IMC particles decreased from 0.20 µm to 0.12 µm, while their average distance decreased from 1.25 µm to 0.65 µm. These fine IMC particles made the alloy stronger and more ductile through dispersion strengthening. More... »

PAGES

564-567

References to SciGraph publications

  • 2002-02-01. Evaluation on the characteristics of tin-silver-bismuth solder in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1994-08. Microstructure evolution of eutectic Sn-Ag solder joints in JOURNAL OF ELECTRONIC MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11664-002-0126-3

    DOI

    http://dx.doi.org/10.1007/s11664-002-0126-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009892546


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Zhidong", 
            "id": "sg:person.016447555263.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zhigang", 
            "id": "sg:person.010532322231.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532322231.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Yaowu", 
            "id": "sg:person.010147557037.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mu", 
            "givenName": "Nan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.28703.3e", 
              "name": [
                "The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Na", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11665-002-0016-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015090596", 
              "https://doi.org/10.1007/s11665-002-0016-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003230303", 
              "https://doi.org/10.1007/bf02651371"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-06", 
        "datePublishedReg": "2002-06-01", 
        "description": "There are numerous intermetallic compounds (IMCs) with various shapes in a tin-silver-bismuth solder alloy. These IMCs can affect the mechanical properties of the solder and, therefore, the reliability of the joints. In this study, minimal rare earth elements added into the solder were adsorbed at the grain boundary of IMCs. This adsorption behavior changed the relationship between growth velocities of the various crystalline directions of the IMC polycrystalline, which resulted in finer particles and more uniform distribution of the IMC phase. The average size of IMC particles decreased from 0.20 \u00b5m to 0.12 \u00b5m, while their average distance decreased from 1.25 \u00b5m to 0.65 \u00b5m. These fine IMC particles made the alloy stronger and more ductile through dispersion strengthening.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11664-002-0126-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136213", 
            "issn": [
              "0361-5235", 
              "1543-186X"
            ], 
            "name": "Journal of Electronic Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "intermetallic compounds", 
          "mechanical properties", 
          "IMC particles", 
          "rare earth element additions", 
          "more uniform distribution", 
          "dispersion strengthening", 
          "solder alloy", 
          "more ductile", 
          "element additions", 
          "grain boundaries", 
          "IMC phases", 
          "numerous intermetallic compounds", 
          "fine particles", 
          "solder", 
          "alloy", 
          "uniform distribution", 
          "adsorption behavior", 
          "crystalline directions", 
          "particles", 
          "average size", 
          "microstructure", 
          "ductile", 
          "properties", 
          "rare earth elements", 
          "velocity", 
          "polycrystalline", 
          "growth velocity", 
          "strengthening", 
          "joints", 
          "earth elements", 
          "boundaries", 
          "reliability", 
          "shape", 
          "phase", 
          "behavior", 
          "direction", 
          "distribution", 
          "size", 
          "elements", 
          "effect", 
          "distance", 
          "addition", 
          "average distance", 
          "study", 
          "compounds", 
          "relationship", 
          "bismuth solder alloy", 
          "minimal rare earth elements", 
          "IMC polycrystalline", 
          "fine IMC particles", 
          "earth element additions", 
          "bismuth solder"
        ], 
        "name": "Effect of rare earth element additions on the microstructure and mechanical properties of tin-silver-bismuth solder", 
        "pagination": "564-567", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009892546"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11664-002-0126-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11664-002-0126-3", 
          "https://app.dimensions.ai/details/publication/pub.1009892546"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_359.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11664-002-0126-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-002-0126-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-002-0126-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-002-0126-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-002-0126-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      22 PREDICATES      80 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11664-002-0126-3 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nb0d12277f5844c6bbb194fd36bd37c6f
    4 schema:citation sg:pub.10.1007/bf02651371
    5 sg:pub.10.1007/s11665-002-0016-0
    6 schema:datePublished 2002-06
    7 schema:datePublishedReg 2002-06-01
    8 schema:description There are numerous intermetallic compounds (IMCs) with various shapes in a tin-silver-bismuth solder alloy. These IMCs can affect the mechanical properties of the solder and, therefore, the reliability of the joints. In this study, minimal rare earth elements added into the solder were adsorbed at the grain boundary of IMCs. This adsorption behavior changed the relationship between growth velocities of the various crystalline directions of the IMC polycrystalline, which resulted in finer particles and more uniform distribution of the IMC phase. The average size of IMC particles decreased from 0.20 µm to 0.12 µm, while their average distance decreased from 1.25 µm to 0.65 µm. These fine IMC particles made the alloy stronger and more ductile through dispersion strengthening.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N289fb84fee854c059dac3dd1db3cafe3
    13 Nb11b9c1f0d544b619c98f1a204e737b8
    14 sg:journal.1136213
    15 schema:keywords IMC particles
    16 IMC phases
    17 IMC polycrystalline
    18 addition
    19 adsorption behavior
    20 alloy
    21 average distance
    22 average size
    23 behavior
    24 bismuth solder
    25 bismuth solder alloy
    26 boundaries
    27 compounds
    28 crystalline directions
    29 direction
    30 dispersion strengthening
    31 distance
    32 distribution
    33 ductile
    34 earth element additions
    35 earth elements
    36 effect
    37 element additions
    38 elements
    39 fine IMC particles
    40 fine particles
    41 grain boundaries
    42 growth velocity
    43 intermetallic compounds
    44 joints
    45 mechanical properties
    46 microstructure
    47 minimal rare earth elements
    48 more ductile
    49 more uniform distribution
    50 numerous intermetallic compounds
    51 particles
    52 phase
    53 polycrystalline
    54 properties
    55 rare earth element additions
    56 rare earth elements
    57 relationship
    58 reliability
    59 shape
    60 size
    61 solder
    62 solder alloy
    63 strengthening
    64 study
    65 uniform distribution
    66 velocity
    67 schema:name Effect of rare earth element additions on the microstructure and mechanical properties of tin-silver-bismuth solder
    68 schema:pagination 564-567
    69 schema:productId N44ed8ebb05d946a6b7484eb6461cd292
    70 N78e5f64f45e24bbf8e630525ef8596ff
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009892546
    72 https://doi.org/10.1007/s11664-002-0126-3
    73 schema:sdDatePublished 2022-01-01T18:12
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N72f63431969c4a1084a48d293dd54af0
    76 schema:url https://doi.org/10.1007/s11664-002-0126-3
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N289fb84fee854c059dac3dd1db3cafe3 schema:volumeNumber 31
    81 rdf:type schema:PublicationVolume
    82 N37dd67d7deaf477c8ffcb4a87b0b46f2 schema:affiliation grid-institutes:grid.28703.3e
    83 schema:familyName Mu
    84 schema:givenName Nan
    85 rdf:type schema:Person
    86 N44ed8ebb05d946a6b7484eb6461cd292 schema:name doi
    87 schema:value 10.1007/s11664-002-0126-3
    88 rdf:type schema:PropertyValue
    89 N542194578a6740908b19bd4cb94db810 rdf:first N936c2596917a4c77b2b573f6c5911131
    90 rdf:rest rdf:nil
    91 N6d3e14b4494d4021899adae7587235b6 rdf:first sg:person.010532322231.60
    92 rdf:rest Na54d106dce8c4e6fb619998751c89d98
    93 N72f63431969c4a1084a48d293dd54af0 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 N78e5f64f45e24bbf8e630525ef8596ff schema:name dimensions_id
    96 schema:value pub.1009892546
    97 rdf:type schema:PropertyValue
    98 N936c2596917a4c77b2b573f6c5911131 schema:affiliation grid-institutes:grid.28703.3e
    99 schema:familyName Sun
    100 schema:givenName Na
    101 rdf:type schema:Person
    102 Na54d106dce8c4e6fb619998751c89d98 rdf:first sg:person.010147557037.66
    103 rdf:rest Nc7458c73143c4e2d869d669e360d1e05
    104 Nb0d12277f5844c6bbb194fd36bd37c6f rdf:first sg:person.016447555263.38
    105 rdf:rest N6d3e14b4494d4021899adae7587235b6
    106 Nb11b9c1f0d544b619c98f1a204e737b8 schema:issueNumber 6
    107 rdf:type schema:PublicationIssue
    108 Nc7458c73143c4e2d869d669e360d1e05 rdf:first N37dd67d7deaf477c8ffcb4a87b0b46f2
    109 rdf:rest N542194578a6740908b19bd4cb94db810
    110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Materials Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136213 schema:issn 0361-5235
    117 1543-186X
    118 schema:name Journal of Electronic Materials
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.010147557037.66 schema:affiliation grid-institutes:grid.28703.3e
    122 schema:familyName Shi
    123 schema:givenName Yaowu
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66
    125 rdf:type schema:Person
    126 sg:person.010532322231.60 schema:affiliation grid-institutes:grid.28703.3e
    127 schema:familyName Chen
    128 schema:givenName Zhigang
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532322231.60
    130 rdf:type schema:Person
    131 sg:person.016447555263.38 schema:affiliation grid-institutes:grid.28703.3e
    132 schema:familyName Xia
    133 schema:givenName Zhidong
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38
    135 rdf:type schema:Person
    136 sg:pub.10.1007/bf02651371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003230303
    137 https://doi.org/10.1007/bf02651371
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11665-002-0016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090596
    140 https://doi.org/10.1007/s11665-002-0016-0
    141 rdf:type schema:CreativeWork
    142 grid-institutes:grid.28703.3e schema:alternateName The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People’s Republic of China
    143 schema:name The Key Laboratory of Advanced Functional Material Ministry of Education China, School of Materials Science and Engineering, Beijing Polytechnic University, 100022, Beijing, People’s Republic of China
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...