Analysis of the laser-cladding process for stellite on steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-06

AUTHORS

A. Frenk, M. Vandyoussefi, J. -D. Wagnière, W. Kurz, A. Zryd

ABSTRACT

Laser-cladding experiments have been performed with STELLITE 6 powder on mild steel substrates, using a 1.5 kW linearly polarized continuous wave CO2 laser as a heat source. The clad height, the mass efficiency, the dimensions of the melt pool, as well as the global absorptivity, were measured as functions of the powder feed rate and the scanning speed. A quantitative analytical model of the process is proposed, based on the overall mass and energy balance. It allows the calculation of the mass efficiency and of the global absorptivity, taking into account the incorporation of the powder into the melt pool as well as the energy absorbed by the powder jet and the substrate. It successfully explains the experimental results and demonstrates the role played by the melt pool inclination with respect to the substrate. A processing diagram is given to find rapidly the optimal laser treatment conditions and the desired clad height. It is discussed with respect to the other limiting conditions of the process, the geometrical maximum powder efficiency, the porosity, the dilution, and the maximum power of the laser installation. More... »

PAGES

501-508

References to SciGraph publications

  • 1994-04. A simple but realistic model for laser cladding in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1992-10. A thermal model of laser cladding by powder injection in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1991-02. In-situ technique for measuring the absorption during laser surface remelting in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0

    DOI

    http://dx.doi.org/10.1007/s11663-997-0117-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024245697


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frenk", 
            "givenName": "A.", 
            "id": "sg:person.012172600435.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172600435.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vandyoussefi", 
            "givenName": "M.", 
            "id": "sg:person.011053312243.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053312243.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagni\u00e8re", 
            "givenName": "J. -D.", 
            "id": "sg:person.011134411607.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134411607.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "W.", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zryd", 
            "givenName": "A.", 
            "id": "sg:person.015010006162.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010006162.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02649723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049223926", 
              "https://doi.org/10.1007/bf02649723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036863917", 
              "https://doi.org/10.1007/bf02672536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02665211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020196097", 
              "https://doi.org/10.1007/bf02665211"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-06", 
        "datePublishedReg": "1997-06-01", 
        "description": "Laser-cladding experiments have been performed with STELLITE 6 powder on mild steel substrates, using a 1.5 kW linearly polarized continuous wave CO2 laser as a heat source. The clad height, the mass efficiency, the dimensions of the melt pool, as well as the global absorptivity, were measured as functions of the powder feed rate and the scanning speed. A quantitative analytical model of the process is proposed, based on the overall mass and energy balance. It allows the calculation of the mass efficiency and of the global absorptivity, taking into account the incorporation of the powder into the melt pool as well as the energy absorbed by the powder jet and the substrate. It successfully explains the experimental results and demonstrates the role played by the melt pool inclination with respect to the substrate. A processing diagram is given to find rapidly the optimal laser treatment conditions and the desired clad height. It is discussed with respect to the other limiting conditions of the process, the geometrical maximum powder efficiency, the porosity, the dilution, and the maximum power of the laser installation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-997-0117-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "keywords": [
          "clad height", 
          "melt pool", 
          "mass efficiency", 
          "Stellite 6 powder", 
          "laser-cladding process", 
          "continuous wave CO2 laser", 
          "powder feed rate", 
          "mild steel substrate", 
          "laser treatment conditions", 
          "powder jet", 
          "steel substrate", 
          "feed rate", 
          "maximum power", 
          "processing diagram", 
          "heat source", 
          "scanning speed", 
          "powder efficiency", 
          "analytical model", 
          "overall mass", 
          "laser installation", 
          "experimental results", 
          "powder", 
          "quantitative analytical model", 
          "CO2 laser", 
          "efficiency", 
          "substrate", 
          "treatment conditions", 
          "energy balance", 
          "Stellite", 
          "steel", 
          "kW", 
          "porosity", 
          "height", 
          "jet", 
          "installation", 
          "process", 
          "absorptivity", 
          "speed", 
          "conditions", 
          "laser", 
          "energy", 
          "power", 
          "inclination", 
          "respect", 
          "calculations", 
          "diagram", 
          "experiments", 
          "incorporation", 
          "model", 
          "source", 
          "account", 
          "results", 
          "dimensions", 
          "rate", 
          "balance", 
          "dilution", 
          "analysis", 
          "mass", 
          "function", 
          "pool", 
          "role"
        ], 
        "name": "Analysis of the laser-cladding process for stellite on steel", 
        "pagination": "501-508", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024245697"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-997-0117-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-997-0117-0", 
          "https://app.dimensions.ai/details/publication/pub.1024245697"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_306.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-997-0117-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      22 PREDICATES      90 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-997-0117-0 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N8a76d8ec03de4889b4eb7a680923b40e
    4 schema:citation sg:pub.10.1007/bf02649723
    5 sg:pub.10.1007/bf02665211
    6 sg:pub.10.1007/bf02672536
    7 schema:datePublished 1997-06
    8 schema:datePublishedReg 1997-06-01
    9 schema:description Laser-cladding experiments have been performed with STELLITE 6 powder on mild steel substrates, using a 1.5 kW linearly polarized continuous wave CO2 laser as a heat source. The clad height, the mass efficiency, the dimensions of the melt pool, as well as the global absorptivity, were measured as functions of the powder feed rate and the scanning speed. A quantitative analytical model of the process is proposed, based on the overall mass and energy balance. It allows the calculation of the mass efficiency and of the global absorptivity, taking into account the incorporation of the powder into the melt pool as well as the energy absorbed by the powder jet and the substrate. It successfully explains the experimental results and demonstrates the role played by the melt pool inclination with respect to the substrate. A processing diagram is given to find rapidly the optimal laser treatment conditions and the desired clad height. It is discussed with respect to the other limiting conditions of the process, the geometrical maximum powder efficiency, the porosity, the dilution, and the maximum power of the laser installation.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N28c64d417af448ceb44c33cccbf67c9b
    14 N4ddabb7155cd4754b872444010e2309b
    15 sg:journal.1136775
    16 schema:keywords CO2 laser
    17 Stellite
    18 Stellite 6 powder
    19 absorptivity
    20 account
    21 analysis
    22 analytical model
    23 balance
    24 calculations
    25 clad height
    26 conditions
    27 continuous wave CO2 laser
    28 diagram
    29 dilution
    30 dimensions
    31 efficiency
    32 energy
    33 energy balance
    34 experimental results
    35 experiments
    36 feed rate
    37 function
    38 heat source
    39 height
    40 inclination
    41 incorporation
    42 installation
    43 jet
    44 kW
    45 laser
    46 laser installation
    47 laser treatment conditions
    48 laser-cladding process
    49 mass
    50 mass efficiency
    51 maximum power
    52 melt pool
    53 mild steel substrate
    54 model
    55 overall mass
    56 pool
    57 porosity
    58 powder
    59 powder efficiency
    60 powder feed rate
    61 powder jet
    62 power
    63 process
    64 processing diagram
    65 quantitative analytical model
    66 rate
    67 respect
    68 results
    69 role
    70 scanning speed
    71 source
    72 speed
    73 steel
    74 steel substrate
    75 substrate
    76 treatment conditions
    77 schema:name Analysis of the laser-cladding process for stellite on steel
    78 schema:pagination 501-508
    79 schema:productId N9a906d253d334c99a2f2e8afccb601a2
    80 Nd7ef5fbf1c5245af9a783e53c35bb439
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024245697
    82 https://doi.org/10.1007/s11663-997-0117-0
    83 schema:sdDatePublished 2022-05-10T09:46
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Nff54d10f319143f385840452f0907a70
    86 schema:url https://doi.org/10.1007/s11663-997-0117-0
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N0eef7181492a4d26a83b21904046a56b rdf:first sg:person.015010006162.39
    91 rdf:rest rdf:nil
    92 N222b47d91a104a69b58967e15468dd57 rdf:first sg:person.011134411607.26
    93 rdf:rest Nc1dfdef75ce9449689a5b7afd807aee3
    94 N28c64d417af448ceb44c33cccbf67c9b schema:volumeNumber 28
    95 rdf:type schema:PublicationVolume
    96 N4ddabb7155cd4754b872444010e2309b schema:issueNumber 3
    97 rdf:type schema:PublicationIssue
    98 N55f44ad2c2534e149bbe1f620bcad839 rdf:first sg:person.011053312243.22
    99 rdf:rest N222b47d91a104a69b58967e15468dd57
    100 N8a76d8ec03de4889b4eb7a680923b40e rdf:first sg:person.012172600435.42
    101 rdf:rest N55f44ad2c2534e149bbe1f620bcad839
    102 N9a906d253d334c99a2f2e8afccb601a2 schema:name dimensions_id
    103 schema:value pub.1024245697
    104 rdf:type schema:PropertyValue
    105 Nc1dfdef75ce9449689a5b7afd807aee3 rdf:first sg:person.010017145423.41
    106 rdf:rest N0eef7181492a4d26a83b21904046a56b
    107 Nd7ef5fbf1c5245af9a783e53c35bb439 schema:name doi
    108 schema:value 10.1007/s11663-997-0117-0
    109 rdf:type schema:PropertyValue
    110 Nff54d10f319143f385840452f0907a70 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Engineering
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Interdisciplinary Engineering
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1136775 schema:issn 1073-5615
    119 1543-1916
    120 schema:name Metallurgical and Materials Transactions B
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    124 schema:familyName Kurz
    125 schema:givenName W.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    127 rdf:type schema:Person
    128 sg:person.011053312243.22 schema:affiliation grid-institutes:grid.5333.6
    129 schema:familyName Vandyoussefi
    130 schema:givenName M.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053312243.22
    132 rdf:type schema:Person
    133 sg:person.011134411607.26 schema:affiliation grid-institutes:grid.5333.6
    134 schema:familyName Wagnière
    135 schema:givenName J. -D.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134411607.26
    137 rdf:type schema:Person
    138 sg:person.012172600435.42 schema:affiliation grid-institutes:None
    139 schema:familyName Frenk
    140 schema:givenName A.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172600435.42
    142 rdf:type schema:Person
    143 sg:person.015010006162.39 schema:affiliation grid-institutes:None
    144 schema:familyName Zryd
    145 schema:givenName A.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010006162.39
    147 rdf:type schema:Person
    148 sg:pub.10.1007/bf02649723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049223926
    149 https://doi.org/10.1007/bf02649723
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02665211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196097
    152 https://doi.org/10.1007/bf02665211
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02672536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036863917
    155 https://doi.org/10.1007/bf02672536
    156 rdf:type schema:CreativeWork
    157 grid-institutes:None schema:alternateName the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland
    158 the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland
    159 schema:name the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland
    160 the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland
    161 rdf:type schema:Organization
    162 grid-institutes:grid.5333.6 schema:alternateName Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland
    163 schema:name Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...