Analysis of the laser-cladding process for stellite on steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-06

AUTHORS

A. Frenk, M. Vandyoussefi, J. -D. Wagnière, W. Kurz, A. Zryd

ABSTRACT

Laser-cladding experiments have been performed with STELLITE 6 powder on mild steel substrates, using a 1.5 kW linearly polarized continuous wave CO2 laser as a heat source. The clad height, the mass efficiency, the dimensions of the melt pool, as well as the global absorptivity, were measured as functions of the powder feed rate and the scanning speed. A quantitative analytical model of the process is proposed, based on the overall mass and energy balance. It allows the calculation of the mass efficiency and of the global absorptivity, taking into account the incorporation of the powder into the melt pool as well as the energy absorbed by the powder jet and the substrate. It successfully explains the experimental results and demonstrates the role played by the melt pool inclination with respect to the substrate. A processing diagram is given to find rapidly the optimal laser treatment conditions and the desired clad height. It is discussed with respect to the other limiting conditions of the process, the geometrical maximum powder efficiency, the porosity, the dilution, and the maximum power of the laser installation. More... »

PAGES

501-508

References to SciGraph publications

  • 1994-04. A simple but realistic model for laser cladding in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1992-10. A thermal model of laser cladding by powder injection in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1991-02. In-situ technique for measuring the absorption during laser surface remelting in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0

    DOI

    http://dx.doi.org/10.1007/s11663-997-0117-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024245697


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frenk", 
            "givenName": "A.", 
            "id": "sg:person.012172600435.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172600435.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vandyoussefi", 
            "givenName": "M.", 
            "id": "sg:person.011053312243.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053312243.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagni\u00e8re", 
            "givenName": "J. -D.", 
            "id": "sg:person.011134411607.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134411607.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "W.", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zryd", 
            "givenName": "A.", 
            "id": "sg:person.015010006162.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010006162.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02665211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020196097", 
              "https://doi.org/10.1007/bf02665211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036863917", 
              "https://doi.org/10.1007/bf02672536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02649723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049223926", 
              "https://doi.org/10.1007/bf02649723"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-06", 
        "datePublishedReg": "1997-06-01", 
        "description": "Laser-cladding experiments have been performed with STELLITE 6 powder on mild steel substrates, using a 1.5 kW linearly polarized continuous wave CO2 laser as a heat source. The clad height, the mass efficiency, the dimensions of the melt pool, as well as the global absorptivity, were measured as functions of the powder feed rate and the scanning speed. A quantitative analytical model of the process is proposed, based on the overall mass and energy balance. It allows the calculation of the mass efficiency and of the global absorptivity, taking into account the incorporation of the powder into the melt pool as well as the energy absorbed by the powder jet and the substrate. It successfully explains the experimental results and demonstrates the role played by the melt pool inclination with respect to the substrate. A processing diagram is given to find rapidly the optimal laser treatment conditions and the desired clad height. It is discussed with respect to the other limiting conditions of the process, the geometrical maximum powder efficiency, the porosity, the dilution, and the maximum power of the laser installation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-997-0117-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "keywords": [
          "clad height", 
          "melt pool", 
          "laser-cladding process", 
          "Stellite 6 powder", 
          "continuous wave CO2 laser", 
          "powder feed rate", 
          "mild steel substrate", 
          "mass efficiency", 
          "laser treatment conditions", 
          "powder jet", 
          "steel substrate", 
          "heat source", 
          "powder efficiency", 
          "scanning speed", 
          "maximum power", 
          "feed rate", 
          "processing diagram", 
          "quantitative analytical model", 
          "analytical model", 
          "overall mass", 
          "powder", 
          "CO2 laser", 
          "experimental results", 
          "laser installation", 
          "energy balance", 
          "treatment conditions", 
          "Stellite", 
          "steel", 
          "substrate", 
          "efficiency", 
          "kW", 
          "porosity", 
          "height", 
          "jet", 
          "installation", 
          "process", 
          "absorptivity", 
          "speed", 
          "conditions", 
          "laser", 
          "energy", 
          "power", 
          "inclination", 
          "diagram", 
          "respect", 
          "experiments", 
          "calculations", 
          "incorporation", 
          "model", 
          "account", 
          "source", 
          "results", 
          "dimensions", 
          "balance", 
          "rate", 
          "dilution", 
          "mass", 
          "analysis", 
          "pool", 
          "function", 
          "role", 
          "Laser-cladding experiments", 
          "wave CO2 laser", 
          "global absorptivity", 
          "melt pool inclination", 
          "pool inclination", 
          "optimal laser treatment conditions", 
          "geometrical maximum powder efficiency", 
          "maximum powder efficiency"
        ], 
        "name": "Analysis of the laser-cladding process for stellite on steel", 
        "pagination": "501-508", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024245697"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-997-0117-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-997-0117-0", 
          "https://app.dimensions.ai/details/publication/pub.1024245697"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_270.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-997-0117-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-997-0117-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      22 PREDICATES      98 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-997-0117-0 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N9c7ce9f8de7443d79c12c1d6ca54b4ca
    4 schema:citation sg:pub.10.1007/bf02649723
    5 sg:pub.10.1007/bf02665211
    6 sg:pub.10.1007/bf02672536
    7 schema:datePublished 1997-06
    8 schema:datePublishedReg 1997-06-01
    9 schema:description Laser-cladding experiments have been performed with STELLITE 6 powder on mild steel substrates, using a 1.5 kW linearly polarized continuous wave CO2 laser as a heat source. The clad height, the mass efficiency, the dimensions of the melt pool, as well as the global absorptivity, were measured as functions of the powder feed rate and the scanning speed. A quantitative analytical model of the process is proposed, based on the overall mass and energy balance. It allows the calculation of the mass efficiency and of the global absorptivity, taking into account the incorporation of the powder into the melt pool as well as the energy absorbed by the powder jet and the substrate. It successfully explains the experimental results and demonstrates the role played by the melt pool inclination with respect to the substrate. A processing diagram is given to find rapidly the optimal laser treatment conditions and the desired clad height. It is discussed with respect to the other limiting conditions of the process, the geometrical maximum powder efficiency, the porosity, the dilution, and the maximum power of the laser installation.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N5bba964d1c3b4321a0faa1889ac57263
    14 Naa6ab9cd5819436cbeb503483d37ff5d
    15 sg:journal.1136775
    16 schema:keywords CO2 laser
    17 Laser-cladding experiments
    18 Stellite
    19 Stellite 6 powder
    20 absorptivity
    21 account
    22 analysis
    23 analytical model
    24 balance
    25 calculations
    26 clad height
    27 conditions
    28 continuous wave CO2 laser
    29 diagram
    30 dilution
    31 dimensions
    32 efficiency
    33 energy
    34 energy balance
    35 experimental results
    36 experiments
    37 feed rate
    38 function
    39 geometrical maximum powder efficiency
    40 global absorptivity
    41 heat source
    42 height
    43 inclination
    44 incorporation
    45 installation
    46 jet
    47 kW
    48 laser
    49 laser installation
    50 laser treatment conditions
    51 laser-cladding process
    52 mass
    53 mass efficiency
    54 maximum powder efficiency
    55 maximum power
    56 melt pool
    57 melt pool inclination
    58 mild steel substrate
    59 model
    60 optimal laser treatment conditions
    61 overall mass
    62 pool
    63 pool inclination
    64 porosity
    65 powder
    66 powder efficiency
    67 powder feed rate
    68 powder jet
    69 power
    70 process
    71 processing diagram
    72 quantitative analytical model
    73 rate
    74 respect
    75 results
    76 role
    77 scanning speed
    78 source
    79 speed
    80 steel
    81 steel substrate
    82 substrate
    83 treatment conditions
    84 wave CO2 laser
    85 schema:name Analysis of the laser-cladding process for stellite on steel
    86 schema:pagination 501-508
    87 schema:productId N364dc576bf514b62a001bbf0a3f2cb9f
    88 Ne6529db1cfd641e0b2775ac03f1835d0
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024245697
    90 https://doi.org/10.1007/s11663-997-0117-0
    91 schema:sdDatePublished 2022-01-01T18:07
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N55033c7fe56248e29603f69038bdabb4
    94 schema:url https://doi.org/10.1007/s11663-997-0117-0
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N364dc576bf514b62a001bbf0a3f2cb9f schema:name dimensions_id
    99 schema:value pub.1024245697
    100 rdf:type schema:PropertyValue
    101 N3bd65953628d4c75ad14999969bed32b rdf:first sg:person.011053312243.22
    102 rdf:rest Ne8ec91e439b849b7a511d45e16c3b3d5
    103 N3ed41e4c5fd548a49590cb8a8cf0aaf8 rdf:first sg:person.015010006162.39
    104 rdf:rest rdf:nil
    105 N55033c7fe56248e29603f69038bdabb4 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 N5bba964d1c3b4321a0faa1889ac57263 schema:volumeNumber 28
    108 rdf:type schema:PublicationVolume
    109 N7b60b1af2bd8476f911b00d47c4c1b5b rdf:first sg:person.010017145423.41
    110 rdf:rest N3ed41e4c5fd548a49590cb8a8cf0aaf8
    111 N9c7ce9f8de7443d79c12c1d6ca54b4ca rdf:first sg:person.012172600435.42
    112 rdf:rest N3bd65953628d4c75ad14999969bed32b
    113 Naa6ab9cd5819436cbeb503483d37ff5d schema:issueNumber 3
    114 rdf:type schema:PublicationIssue
    115 Ne6529db1cfd641e0b2775ac03f1835d0 schema:name doi
    116 schema:value 10.1007/s11663-997-0117-0
    117 rdf:type schema:PropertyValue
    118 Ne8ec91e439b849b7a511d45e16c3b3d5 rdf:first sg:person.011134411607.26
    119 rdf:rest N7b60b1af2bd8476f911b00d47c4c1b5b
    120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Engineering
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Interdisciplinary Engineering
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1136775 schema:issn 1073-5615
    127 1543-1916
    128 schema:name Metallurgical and Materials Transactions B
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    132 schema:familyName Kurz
    133 schema:givenName W.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    135 rdf:type schema:Person
    136 sg:person.011053312243.22 schema:affiliation grid-institutes:grid.5333.6
    137 schema:familyName Vandyoussefi
    138 schema:givenName M.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053312243.22
    140 rdf:type schema:Person
    141 sg:person.011134411607.26 schema:affiliation grid-institutes:grid.5333.6
    142 schema:familyName Wagnière
    143 schema:givenName J. -D.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134411607.26
    145 rdf:type schema:Person
    146 sg:person.012172600435.42 schema:affiliation grid-institutes:None
    147 schema:familyName Frenk
    148 schema:givenName A.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172600435.42
    150 rdf:type schema:Person
    151 sg:person.015010006162.39 schema:affiliation grid-institutes:None
    152 schema:familyName Zryd
    153 schema:givenName A.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010006162.39
    155 rdf:type schema:Person
    156 sg:pub.10.1007/bf02649723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049223926
    157 https://doi.org/10.1007/bf02649723
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02665211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196097
    160 https://doi.org/10.1007/bf02665211
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf02672536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036863917
    163 https://doi.org/10.1007/bf02672536
    164 rdf:type schema:CreativeWork
    165 grid-institutes:None schema:alternateName the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland
    166 the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland
    167 schema:name the Charmilles Technologies SA, CH-1217, Meyrin, Switzerland
    168 the Robert Mathys Foundation, CH-2544, Bettlack, Switzerland
    169 rdf:type schema:Organization
    170 grid-institutes:grid.5333.6 schema:alternateName Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland
    171 schema:name Department of Materials, the Swiss Federal Institute of Technology, CH-1015, Lausanne, Switzerland
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...