A Large Eddy Simulation Study of Flow Turbulence, Alumina Transport, and Bath Temperature Evolution in Conventional Aluminum-Smelting Cell Using OpenFOAM View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-04

AUTHORS

Nithin S. Panicker, Rajneesh Chaudhary, Vivek M. Rao, Marc-Olivier G. Delchini, Prashant K. Jain

ABSTRACT

In this study, a Large Eddy Simulation (LES) of the aluminum-smelting process is performed using OpenFOAM. To understand the coupled behavior of heat transfer, mass transfer, and flow of the smelting process, a multi-physics computational fluid dynamics (CFD) model based on the Eulerian–Eulerian multi-fluid approach is adopted. The model accounts for CO2 bubble and magnetohydrodynamics (MHD)-driven flow, along with alumina dissolution, transport, and bath temperature evolution. The simulation predictions show small-scale turbulent vortical structures in the anode–cathode space caused by combined effect of MHD and CO2 bubble-bath interactions and relatively large-scale asymmetric vortices in the inter-anode space caused by the CO2 bubble-bath interactions. The vortex formation at the edges of the anodes evidently aids in transporting alumina from the central channel to the bottom of the anodes and prevents accumulation of gas bubbles in the periphery of the anode bottom. Symmetric bath cold spots are observed in the vicinity of the feeder. Cold spots are also observed in the anode–cathode distance space below the anode bottom due to the transport of undissolved solid to this region by the flow. The findings from the work are useful in developing and designing alumina-feeding strategy leading to reduced anode effects and smooth operation of the cell. The work also highlights the important flow structures in conventional aluminum-smelting cell. More... »

PAGES

1-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11663-022-02539-w

DOI

http://dx.doi.org/10.1007/s11663-022-02539-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147616167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panicker", 
        "givenName": "Nithin S.", 
        "id": "sg:person.011324204010.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324204010.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alcoa Technical Center, Alcoa USA Corporation, 15068, New Kensington, PA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Alcoa Technical Center, Alcoa USA Corporation, 15068, New Kensington, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaudhary", 
        "givenName": "Rajneesh", 
        "id": "sg:person.016426513141.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426513141.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rao", 
        "givenName": "Vivek M.", 
        "id": "sg:person.015101731421.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101731421.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delchini", 
        "givenName": "Marc-Olivier G.", 
        "id": "sg:person.016474672421.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474672421.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Prashant K.", 
        "id": "sg:person.011364562221.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364562221.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-05864-7_75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112157601", 
          "https://doi.org/10.1007/978-3-030-05864-7_75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51541-0_83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083748464", 
          "https://doi.org/10.1007/978-3-319-51541-0_83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-014-1020-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021295612", 
          "https://doi.org/10.1007/s11837-014-1020-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-65136-1_101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091228625", 
          "https://doi.org/10.1007/978-3-319-65136-1_101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-013-0001-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050167900", 
          "https://doi.org/10.1007/s11663-013-0001-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-018-3260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110344808", 
          "https://doi.org/10.1007/s11837-018-3260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-48156-2_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084728157", 
          "https://doi.org/10.1007/978-3-319-48156-2_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-997-0129-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007437893", 
          "https://doi.org/10.1007/s11663-997-0129-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-018-1190-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101017618", 
          "https://doi.org/10.1007/s11663-018-1190-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-04", 
    "datePublishedReg": "2022-05-04", 
    "description": "In this study, a Large Eddy Simulation (LES) of the aluminum-smelting process is performed using OpenFOAM. To understand the coupled behavior of heat transfer, mass transfer, and flow of the smelting process, a multi-physics computational fluid dynamics (CFD) model based on the Eulerian\u2013Eulerian multi-fluid approach is adopted. The model accounts for CO2 bubble and magnetohydrodynamics (MHD)-driven flow, along with alumina dissolution, transport, and bath temperature evolution. The simulation predictions show small-scale turbulent vortical structures in the anode\u2013cathode space caused by combined effect of MHD and CO2 bubble-bath interactions and relatively large-scale asymmetric vortices in the inter-anode space caused by the CO2 bubble-bath interactions. The vortex formation at the edges of the anodes evidently aids in transporting alumina from the central channel to the bottom of the anodes and prevents accumulation of gas bubbles in the periphery of the anode bottom. Symmetric bath cold spots are observed in the vicinity of the feeder. Cold spots are also observed in the anode\u2013cathode distance space below the anode bottom due to the transport of undissolved solid to this region by the flow. The findings from the work are useful in developing and designing alumina-feeding strategy leading to reduced anode effects and smooth operation of the cell. The work also highlights the important flow structures in conventional aluminum-smelting cell.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11663-022-02539-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136775", 
        "issn": [
          "1073-5615", 
          "1543-1916"
        ], 
        "name": "Metallurgical and Materials Transactions B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "large eddy simulation", 
      "aluminum smelting cells", 
      "anode bottom", 
      "Eulerian\u2013Eulerian multi-fluid approach", 
      "computational fluid dynamics model", 
      "large-eddy simulation study", 
      "turbulent vortical structures", 
      "Eddy Simulation Study", 
      "important flow structures", 
      "fluid dynamics model", 
      "aluminum smelting process", 
      "multi-fluid approach", 
      "temperature evolution", 
      "heat transfer", 
      "eddy simulation", 
      "flow structure", 
      "vortical structures", 
      "flow turbulence", 
      "smelting process", 
      "CO2 bubbles", 
      "mass transfer", 
      "gas bubbles", 
      "simulation predictions", 
      "alumina dissolution", 
      "asymmetric vortices", 
      "anode-cathode space", 
      "vortex formation", 
      "smooth operation", 
      "anode effect", 
      "dynamic model", 
      "OpenFOAM", 
      "anode", 
      "bubbles", 
      "flow", 
      "cold spots", 
      "bottom", 
      "simulation study", 
      "alumina", 
      "transport", 
      "turbulence", 
      "combined effect", 
      "vortices", 
      "simulations", 
      "transfer", 
      "MHD", 
      "structure", 
      "process", 
      "magnetohydrodynamics", 
      "dissolution", 
      "operation", 
      "work", 
      "feeders", 
      "central channel", 
      "model", 
      "vicinity", 
      "behavior", 
      "prediction", 
      "edge", 
      "spots", 
      "effect", 
      "evolution", 
      "channels", 
      "space", 
      "formation", 
      "interaction", 
      "approach", 
      "study", 
      "region", 
      "strategies", 
      "cells", 
      "distance space", 
      "periphery", 
      "accumulation", 
      "prevents accumulation", 
      "findings"
    ], 
    "name": "A Large Eddy Simulation Study of Flow Turbulence, Alumina Transport, and Bath Temperature Evolution in Conventional Aluminum-Smelting Cell Using OpenFOAM", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147616167"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11663-022-02539-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11663-022-02539-w", 
      "https://app.dimensions.ai/details/publication/pub.1147616167"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_927.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11663-022-02539-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02539-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02539-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02539-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02539-w'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      107 URIs      90 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11663-022-02539-w schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na2d45ea16690403c8e1564268316a752
4 schema:citation sg:pub.10.1007/978-3-030-05864-7_75
5 sg:pub.10.1007/978-3-319-48156-2_14
6 sg:pub.10.1007/978-3-319-51541-0_83
7 sg:pub.10.1007/978-3-319-65136-1_101
8 sg:pub.10.1007/s11663-013-0001-z
9 sg:pub.10.1007/s11663-018-1190-2
10 sg:pub.10.1007/s11663-997-0129-9
11 sg:pub.10.1007/s11837-014-1020-1
12 sg:pub.10.1007/s11837-018-3260-y
13 schema:datePublished 2022-05-04
14 schema:datePublishedReg 2022-05-04
15 schema:description In this study, a Large Eddy Simulation (LES) of the aluminum-smelting process is performed using OpenFOAM. To understand the coupled behavior of heat transfer, mass transfer, and flow of the smelting process, a multi-physics computational fluid dynamics (CFD) model based on the Eulerian–Eulerian multi-fluid approach is adopted. The model accounts for CO2 bubble and magnetohydrodynamics (MHD)-driven flow, along with alumina dissolution, transport, and bath temperature evolution. The simulation predictions show small-scale turbulent vortical structures in the anode–cathode space caused by combined effect of MHD and CO2 bubble-bath interactions and relatively large-scale asymmetric vortices in the inter-anode space caused by the CO2 bubble-bath interactions. The vortex formation at the edges of the anodes evidently aids in transporting alumina from the central channel to the bottom of the anodes and prevents accumulation of gas bubbles in the periphery of the anode bottom. Symmetric bath cold spots are observed in the vicinity of the feeder. Cold spots are also observed in the anode–cathode distance space below the anode bottom due to the transport of undissolved solid to this region by the flow. The findings from the work are useful in developing and designing alumina-feeding strategy leading to reduced anode effects and smooth operation of the cell. The work also highlights the important flow structures in conventional aluminum-smelting cell.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf sg:journal.1136775
20 schema:keywords CO2 bubbles
21 Eddy Simulation Study
22 Eulerian–Eulerian multi-fluid approach
23 MHD
24 OpenFOAM
25 accumulation
26 alumina
27 alumina dissolution
28 aluminum smelting cells
29 aluminum smelting process
30 anode
31 anode bottom
32 anode effect
33 anode-cathode space
34 approach
35 asymmetric vortices
36 behavior
37 bottom
38 bubbles
39 cells
40 central channel
41 channels
42 cold spots
43 combined effect
44 computational fluid dynamics model
45 dissolution
46 distance space
47 dynamic model
48 eddy simulation
49 edge
50 effect
51 evolution
52 feeders
53 findings
54 flow
55 flow structure
56 flow turbulence
57 fluid dynamics model
58 formation
59 gas bubbles
60 heat transfer
61 important flow structures
62 interaction
63 large eddy simulation
64 large-eddy simulation study
65 magnetohydrodynamics
66 mass transfer
67 model
68 multi-fluid approach
69 operation
70 periphery
71 prediction
72 prevents accumulation
73 process
74 region
75 simulation predictions
76 simulation study
77 simulations
78 smelting process
79 smooth operation
80 space
81 spots
82 strategies
83 structure
84 study
85 temperature evolution
86 transfer
87 transport
88 turbulence
89 turbulent vortical structures
90 vicinity
91 vortex formation
92 vortical structures
93 vortices
94 work
95 schema:name A Large Eddy Simulation Study of Flow Turbulence, Alumina Transport, and Bath Temperature Evolution in Conventional Aluminum-Smelting Cell Using OpenFOAM
96 schema:pagination 1-20
97 schema:productId N5da1aef979834ffb80683ddb602e3c25
98 Nd7eb79599ffc46f1af6d5d538ab5bda7
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147616167
100 https://doi.org/10.1007/s11663-022-02539-w
101 schema:sdDatePublished 2022-06-01T22:25
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N9b46aa601b9a448d83124e5258fd3d32
104 schema:url https://doi.org/10.1007/s11663-022-02539-w
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N13523f9d862c4bc68785229db76f540c rdf:first sg:person.011364562221.13
109 rdf:rest rdf:nil
110 N177ef60ac31649338371f8c003a73c8c rdf:first sg:person.015101731421.74
111 rdf:rest Nc9cceeaf91c048878e6c353644c2acab
112 N5da1aef979834ffb80683ddb602e3c25 schema:name dimensions_id
113 schema:value pub.1147616167
114 rdf:type schema:PropertyValue
115 N8529252738cf477fa06e154c5051ae5d rdf:first sg:person.016426513141.32
116 rdf:rest N177ef60ac31649338371f8c003a73c8c
117 N9b46aa601b9a448d83124e5258fd3d32 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Na2d45ea16690403c8e1564268316a752 rdf:first sg:person.011324204010.70
120 rdf:rest N8529252738cf477fa06e154c5051ae5d
121 Nc9cceeaf91c048878e6c353644c2acab rdf:first sg:person.016474672421.71
122 rdf:rest N13523f9d862c4bc68785229db76f540c
123 Nd7eb79599ffc46f1af6d5d538ab5bda7 schema:name doi
124 schema:value 10.1007/s11663-022-02539-w
125 rdf:type schema:PropertyValue
126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
127 schema:name Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
130 schema:name Interdisciplinary Engineering
131 rdf:type schema:DefinedTerm
132 sg:journal.1136775 schema:issn 1073-5615
133 1543-1916
134 schema:name Metallurgical and Materials Transactions B
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.011324204010.70 schema:affiliation grid-institutes:grid.135519.a
138 schema:familyName Panicker
139 schema:givenName Nithin S.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324204010.70
141 rdf:type schema:Person
142 sg:person.011364562221.13 schema:affiliation grid-institutes:grid.135519.a
143 schema:familyName Jain
144 schema:givenName Prashant K.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364562221.13
146 rdf:type schema:Person
147 sg:person.015101731421.74 schema:affiliation grid-institutes:grid.135519.a
148 schema:familyName Rao
149 schema:givenName Vivek M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101731421.74
151 rdf:type schema:Person
152 sg:person.016426513141.32 schema:affiliation grid-institutes:None
153 schema:familyName Chaudhary
154 schema:givenName Rajneesh
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426513141.32
156 rdf:type schema:Person
157 sg:person.016474672421.71 schema:affiliation grid-institutes:grid.135519.a
158 schema:familyName Delchini
159 schema:givenName Marc-Olivier G.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474672421.71
161 rdf:type schema:Person
162 sg:pub.10.1007/978-3-030-05864-7_75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112157601
163 https://doi.org/10.1007/978-3-030-05864-7_75
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-3-319-48156-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084728157
166 https://doi.org/10.1007/978-3-319-48156-2_14
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-3-319-51541-0_83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083748464
169 https://doi.org/10.1007/978-3-319-51541-0_83
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/978-3-319-65136-1_101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091228625
172 https://doi.org/10.1007/978-3-319-65136-1_101
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11663-013-0001-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050167900
175 https://doi.org/10.1007/s11663-013-0001-z
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11663-018-1190-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101017618
178 https://doi.org/10.1007/s11663-018-1190-2
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11663-997-0129-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007437893
181 https://doi.org/10.1007/s11663-997-0129-9
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11837-014-1020-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021295612
184 https://doi.org/10.1007/s11837-014-1020-1
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s11837-018-3260-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1110344808
187 https://doi.org/10.1007/s11837-018-3260-y
188 rdf:type schema:CreativeWork
189 grid-institutes:None schema:alternateName Alcoa Technical Center, Alcoa USA Corporation, 15068, New Kensington, PA, USA
190 schema:name Alcoa Technical Center, Alcoa USA Corporation, 15068, New Kensington, PA, USA
191 rdf:type schema:Organization
192 grid-institutes:grid.135519.a schema:alternateName Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA
193 schema:name Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, 37830, Oak Ridge, TN, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...