Local Bubble Characteristics in a Side-Blown Vortex Smelting Reduction Reactor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-28

AUTHORS

Shuai Zhu, Qiuyue Zhao, Yan Liu, Xiaolong Li, Ting’an Zhang

ABSTRACT

In bath smelting, the study of gas–liquid interaction and the local bubble characteristics is very important. Physical simulation is used to study the effect of the nozzle diameter, the number of lances, total gas flow rate, and the position of the measurement on the local bubble characteristics and gas–liquid interaction in the side-blown vortex smelting reduction reactor. The results show that as the total gas flow rate increases, the gas distribution range will expand, the location of the maximum gas holdup will be away from the lances. As the nozzle diameter decreases, the location of the maximum gas holdup will be away from the lances. When 6 lances are used, a bubble band with uniform bubble velocity distribution is generated in the jet control area. When using 3 lances, the uniformity of the bubble velocity distribution is worse than that when 6 lances are used, but the bubble velocity will be larger. As the total gas flow rate increases, the mean specific interfacial area in the reactor increases. When the total gas flow rate is high, using 3 lances will produce more interfacial area than using 6 lances. The empirical correlation of the local specific interfacial area is obtained. More... »

PAGES

1-18

References to SciGraph publications

  • 2017-04-07. Submerged Gas Jet Penetration: A Study of Bubbling Versus Jetting and Side Versus Bottom Blowing in Copper Bath Smelting in JOM
  • 2019-07-03. The Importance of Viscous and Interfacial Forces in the Hydrodynamics of the Top-Submerged-Lance Furnace in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-12. Measurement of physical characteristics of bubbles in gas-liquid plumes: Part I. An improved electroresistivity probe technique in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2019-09-05. Gas-liquid mass transfer and flow phenomena in a peirce-smith converter: A numerical model study in INTERNATIONAL JOURNAL OF MINERALS, METALLURGY AND MATERIALS
  • 2021-01-02. Experimental Study on Bubble Distribution and Splashing in a Peirce–Smith Copper Converter in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2020-06-25. Physical simulation of mixing on a C–H2 smelting reduction reactor with different tracer feeding positions in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 2018-02-26. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2019-09-25. Effect of Bath Depth and Nozzle Geometry on Spout Height in Submerged Gas Injection at Bottom in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1999-04. Model study on mixing and mass transfer in ferroalloy refining processes in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2013-09-24. A Critical Review of the Modified Froude Number in Ladle Metallurgy in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1979-12. Flow regimes in submerged gas injection in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1987-12. Measurement of physical characteristics of bubbles in gas-liquid plumes: Part II. Local properties of turbulent air-water plumes in vertically injected jets in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-01-19. Assessment of Gas-Slag-Metal Interaction During a Converter Steelmaking Process in 9TH INTERNATIONAL SYMPOSIUM ON HIGH-TEMPERATURE METALLURGICAL PROCESSING
  • 1990-08. A study on measurement of gas-liquid interfacial area in a dispersed gas injection system in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-10-07. Mixing Behavior in a Side-Blown Vortex Smelting Reduction Reactor in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-08-16. Computational Fluid Dynamics Simulation of Gas–Matte–Slag Three-Phase Flow in an ISASMELT Furnace in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-07-19. CFD Investigations of Bath Dynamics in a Pilot-Scale TSL Furnace in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2019-10-29. X-ray Radioscopic Visualization of Bubbly Flows Injected Through a Top Submerged Lance into a Liquid Metal in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-10-08. Effect of Nozzle Geometry on Centerline Gas Holdup in Submerged Gas Injection in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-01-03. Gas–liquid mass transfer and flow phenomena in the Peirce–Smith converter: a water model study in INTERNATIONAL JOURNAL OF MINERALS, METALLURGY AND MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-022-02530-5

    DOI

    http://dx.doi.org/10.1007/s11663-022-02530-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147471375


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, 110819, Shenyang, P.R. China", 
                "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Shuai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, 110819, Shenyang, P.R. China", 
                "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Qiuyue", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, 110819, Shenyang, P.R. China", 
                "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, 110819, Shenyang, P.R. China", 
                "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiaolong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, 110819, Shenyang, P.R. China", 
                "School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ting\u2019an", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11663-019-01679-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121264818", 
              "https://doi.org/10.1007/s11663-019-01679-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-019-01630-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117726138", 
              "https://doi.org/10.1007/s11663-019-01630-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42243-020-00436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128769536", 
              "https://doi.org/10.1007/s42243-020-00436-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12613-019-1831-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120880172", 
              "https://doi.org/10.1007/s12613-019-1831-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12613-018-1544-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100166951", 
              "https://doi.org/10.1007/s12613-018-1544-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-72138-5_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100467336", 
              "https://doi.org/10.1007/978-3-319-72138-5_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-019-01720-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122173082", 
              "https://doi.org/10.1007/s11663-019-01720-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02662566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049014608", 
              "https://doi.org/10.1007/bf02662566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02290-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140446429", 
              "https://doi.org/10.1007/s11663-021-02290-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-017-2336-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084519860", 
              "https://doi.org/10.1007/s11837-017-2336-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02315-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141743616", 
              "https://doi.org/10.1007/s11663-021-02315-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-013-9943-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025298649", 
              "https://doi.org/10.1007/s11663-013-9943-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-018-1206-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101223849", 
              "https://doi.org/10.1007/s11663-018-1206-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-999-0052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001009507", 
              "https://doi.org/10.1007/s11663-999-0052-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043173110", 
              "https://doi.org/10.1007/bf02672881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050954503", 
              "https://doi.org/10.1007/bf02654245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000031171", 
              "https://doi.org/10.1007/bf02672882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02326-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141719632", 
              "https://doi.org/10.1007/s11663-021-02326-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02233-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139797336", 
              "https://doi.org/10.1007/s11663-021-02233-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-020-02030-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134280874", 
              "https://doi.org/10.1007/s11663-020-02030-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-28", 
        "datePublishedReg": "2022-04-28", 
        "description": "In bath smelting, the study of gas\u2013liquid interaction and the local bubble characteristics is very important. Physical simulation is used to study the effect of the nozzle diameter, the number of lances, total gas flow rate, and the position of the measurement on the local bubble characteristics and gas\u2013liquid interaction in the side-blown vortex smelting reduction reactor. The results show that as the total gas flow rate increases, the gas distribution range will expand, the location of the maximum gas holdup will be away from the lances. As the nozzle diameter decreases, the location of the maximum gas holdup will be away from the lances. When 6 lances are used, a bubble band with uniform bubble velocity distribution is generated in the jet control area. When using 3 lances, the uniformity of the bubble velocity distribution is worse than that when 6 lances are used, but the bubble velocity will be larger. As the total gas flow rate increases, the mean specific interfacial area in the reactor increases. When the total gas flow rate is high, using 3 lances will produce more interfacial area than using 6 lances. The empirical correlation of the local specific interfacial area is obtained.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-022-02530-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8381640", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "gas flow rate increases", 
          "total gas flow rate", 
          "maximum gas holdup", 
          "bubble velocity distribution", 
          "gas flow rate", 
          "gas-liquid interaction", 
          "flow rate increases", 
          "specific interfacial area", 
          "bubble characteristics", 
          "interfacial area", 
          "gas holdup", 
          "reduction reactor", 
          "flow rate", 
          "velocity distribution", 
          "bath smelting", 
          "nozzle diameter", 
          "reactor increases", 
          "rate increases", 
          "bubble velocity", 
          "physical simulation", 
          "bubble bands", 
          "more interfacial area", 
          "empirical correlations", 
          "holdup", 
          "diameter decreases", 
          "reactor", 
          "lance", 
          "smelting", 
          "characteristics", 
          "velocity", 
          "simulations", 
          "uniformity", 
          "control area", 
          "diameter", 
          "distribution", 
          "measurements", 
          "location", 
          "increase", 
          "area", 
          "range", 
          "rate", 
          "band", 
          "side", 
          "results", 
          "interaction", 
          "effect", 
          "position", 
          "decrease", 
          "number", 
          "study", 
          "correlation", 
          "distribution range"
        ], 
        "name": "Local Bubble Characteristics in a Side-Blown Vortex Smelting Reduction Reactor", 
        "pagination": "1-18", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147471375"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-022-02530-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-022-02530-5", 
          "https://app.dimensions.ai/details/publication/pub.1147471375"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_926.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-022-02530-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02530-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02530-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02530-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02530-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    210 TRIPLES      22 PREDICATES      95 URIs      67 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-022-02530-5 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author Na60dd3d35ad94de8a2c2634f7e340fb3
    4 schema:citation sg:pub.10.1007/978-3-319-72138-5_36
    5 sg:pub.10.1007/bf02654245
    6 sg:pub.10.1007/bf02662566
    7 sg:pub.10.1007/bf02672881
    8 sg:pub.10.1007/bf02672882
    9 sg:pub.10.1007/s11663-013-9943-4
    10 sg:pub.10.1007/s11663-018-1206-y
    11 sg:pub.10.1007/s11663-019-01630-z
    12 sg:pub.10.1007/s11663-019-01679-w
    13 sg:pub.10.1007/s11663-019-01720-y
    14 sg:pub.10.1007/s11663-020-02030-4
    15 sg:pub.10.1007/s11663-021-02233-3
    16 sg:pub.10.1007/s11663-021-02290-8
    17 sg:pub.10.1007/s11663-021-02315-2
    18 sg:pub.10.1007/s11663-021-02326-z
    19 sg:pub.10.1007/s11663-999-0052-3
    20 sg:pub.10.1007/s11837-017-2336-4
    21 sg:pub.10.1007/s12613-018-1544-4
    22 sg:pub.10.1007/s12613-019-1831-8
    23 sg:pub.10.1007/s42243-020-00436-7
    24 schema:datePublished 2022-04-28
    25 schema:datePublishedReg 2022-04-28
    26 schema:description In bath smelting, the study of gas–liquid interaction and the local bubble characteristics is very important. Physical simulation is used to study the effect of the nozzle diameter, the number of lances, total gas flow rate, and the position of the measurement on the local bubble characteristics and gas–liquid interaction in the side-blown vortex smelting reduction reactor. The results show that as the total gas flow rate increases, the gas distribution range will expand, the location of the maximum gas holdup will be away from the lances. As the nozzle diameter decreases, the location of the maximum gas holdup will be away from the lances. When 6 lances are used, a bubble band with uniform bubble velocity distribution is generated in the jet control area. When using 3 lances, the uniformity of the bubble velocity distribution is worse than that when 6 lances are used, but the bubble velocity will be larger. As the total gas flow rate increases, the mean specific interfacial area in the reactor increases. When the total gas flow rate is high, using 3 lances will produce more interfacial area than using 6 lances. The empirical correlation of the local specific interfacial area is obtained.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf sg:journal.1136775
    31 schema:keywords area
    32 band
    33 bath smelting
    34 bubble bands
    35 bubble characteristics
    36 bubble velocity
    37 bubble velocity distribution
    38 characteristics
    39 control area
    40 correlation
    41 decrease
    42 diameter
    43 diameter decreases
    44 distribution
    45 distribution range
    46 effect
    47 empirical correlations
    48 flow rate
    49 flow rate increases
    50 gas flow rate
    51 gas flow rate increases
    52 gas holdup
    53 gas-liquid interaction
    54 holdup
    55 increase
    56 interaction
    57 interfacial area
    58 lance
    59 location
    60 maximum gas holdup
    61 measurements
    62 more interfacial area
    63 nozzle diameter
    64 number
    65 physical simulation
    66 position
    67 range
    68 rate
    69 rate increases
    70 reactor
    71 reactor increases
    72 reduction reactor
    73 results
    74 side
    75 simulations
    76 smelting
    77 specific interfacial area
    78 study
    79 total gas flow rate
    80 uniformity
    81 velocity
    82 velocity distribution
    83 schema:name Local Bubble Characteristics in a Side-Blown Vortex Smelting Reduction Reactor
    84 schema:pagination 1-18
    85 schema:productId N997994dd5fa14268bfbf6ae3ac3bfe29
    86 Ne427407ed1d24483a352a8be39b619d6
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147471375
    88 https://doi.org/10.1007/s11663-022-02530-5
    89 schema:sdDatePublished 2022-06-01T22:25
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher Ncc7de353da21436abb05130c22738e10
    92 schema:url https://doi.org/10.1007/s11663-022-02530-5
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N349a6b7dd93e4fb3b3f8d75532bc17ab schema:affiliation grid-institutes:grid.412252.2
    97 schema:familyName Zhu
    98 schema:givenName Shuai
    99 rdf:type schema:Person
    100 N57a7b77532aa489d8b7a415226112144 schema:affiliation grid-institutes:grid.412252.2
    101 schema:familyName Zhao
    102 schema:givenName Qiuyue
    103 rdf:type schema:Person
    104 N5f84a316388545da9b9fcfb25b4ed7ff schema:affiliation grid-institutes:grid.412252.2
    105 schema:familyName Li
    106 schema:givenName Xiaolong
    107 rdf:type schema:Person
    108 N7d4034ea63be4369bac84ae61a1657a4 schema:affiliation grid-institutes:grid.412252.2
    109 schema:familyName Liu
    110 schema:givenName Yan
    111 rdf:type schema:Person
    112 N8869562c4f524a5baceee0103f964391 rdf:first Ne3533cd8654543c086ca9c3a9ed39731
    113 rdf:rest rdf:nil
    114 N95f32a366ffb42738fd57c9883e40d57 rdf:first N5f84a316388545da9b9fcfb25b4ed7ff
    115 rdf:rest N8869562c4f524a5baceee0103f964391
    116 N997994dd5fa14268bfbf6ae3ac3bfe29 schema:name dimensions_id
    117 schema:value pub.1147471375
    118 rdf:type schema:PropertyValue
    119 Na60dd3d35ad94de8a2c2634f7e340fb3 rdf:first N349a6b7dd93e4fb3b3f8d75532bc17ab
    120 rdf:rest Nef62ccd2cf4a4bec9975ab631bb895f1
    121 Ncc7de353da21436abb05130c22738e10 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 Ne3533cd8654543c086ca9c3a9ed39731 schema:affiliation grid-institutes:grid.412252.2
    124 schema:familyName Zhang
    125 schema:givenName Ting’an
    126 rdf:type schema:Person
    127 Ne427407ed1d24483a352a8be39b619d6 schema:name doi
    128 schema:value 10.1007/s11663-022-02530-5
    129 rdf:type schema:PropertyValue
    130 Ne924d9fd695a4d4fba60615f7476ba83 rdf:first N7d4034ea63be4369bac84ae61a1657a4
    131 rdf:rest N95f32a366ffb42738fd57c9883e40d57
    132 Nef62ccd2cf4a4bec9975ab631bb895f1 rdf:first N57a7b77532aa489d8b7a415226112144
    133 rdf:rest Ne924d9fd695a4d4fba60615f7476ba83
    134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Engineering
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Chemical Engineering
    139 rdf:type schema:DefinedTerm
    140 sg:grant.8381640 http://pending.schema.org/fundedItem sg:pub.10.1007/s11663-022-02530-5
    141 rdf:type schema:MonetaryGrant
    142 sg:journal.1136775 schema:issn 1073-5615
    143 1543-1916
    144 schema:name Metallurgical and Materials Transactions B
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:pub.10.1007/978-3-319-72138-5_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100467336
    148 https://doi.org/10.1007/978-3-319-72138-5_36
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02654245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050954503
    151 https://doi.org/10.1007/bf02654245
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02662566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049014608
    154 https://doi.org/10.1007/bf02662566
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf02672881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043173110
    157 https://doi.org/10.1007/bf02672881
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02672882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000031171
    160 https://doi.org/10.1007/bf02672882
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11663-013-9943-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025298649
    163 https://doi.org/10.1007/s11663-013-9943-4
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11663-018-1206-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101223849
    166 https://doi.org/10.1007/s11663-018-1206-y
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11663-019-01630-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117726138
    169 https://doi.org/10.1007/s11663-019-01630-z
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11663-019-01679-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1121264818
    172 https://doi.org/10.1007/s11663-019-01679-w
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11663-019-01720-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1122173082
    175 https://doi.org/10.1007/s11663-019-01720-y
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11663-020-02030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134280874
    178 https://doi.org/10.1007/s11663-020-02030-4
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11663-021-02233-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139797336
    181 https://doi.org/10.1007/s11663-021-02233-3
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11663-021-02290-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140446429
    184 https://doi.org/10.1007/s11663-021-02290-8
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11663-021-02315-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141743616
    187 https://doi.org/10.1007/s11663-021-02315-2
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s11663-021-02326-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1141719632
    190 https://doi.org/10.1007/s11663-021-02326-z
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s11663-999-0052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001009507
    193 https://doi.org/10.1007/s11663-999-0052-3
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s11837-017-2336-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519860
    196 https://doi.org/10.1007/s11837-017-2336-4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s12613-018-1544-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100166951
    199 https://doi.org/10.1007/s12613-018-1544-4
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s12613-019-1831-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120880172
    202 https://doi.org/10.1007/s12613-019-1831-8
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s42243-020-00436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128769536
    205 https://doi.org/10.1007/s42243-020-00436-7
    206 rdf:type schema:CreativeWork
    207 grid-institutes:grid.412252.2 schema:alternateName School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China
    208 schema:name Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, 110819, Shenyang, P.R. China
    209 School of Metallurgy, Northeastern University, 110819, Shenyang, P.R. China
    210 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...