Experimental Evaluation of MHD Modeling of EMS During Continuous Casting View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-19

AUTHORS

Haijie Zhang, Menghuai Wu, Zhao Zhang, Andreas Ludwig, Abdellah Kharicha, Arnold Rónaföldi, András Roósz, Zsolt Veres, Mária Svéda

ABSTRACT

Electromagnetic stirring (EMS) has been recognized as a mature technique in steel industry to control the as-cast structure of steel continuous casting (CC), and computational magnetohydrodynamic (MHD) methods have been applied to study the EMS efficiency. Most MHD methods de-coupled the calculations of electromagnetic and flow fields or simplifications were made for the flow–electromagnetic interactions. However, the experimental validations of the MHD modeling have been rarely reported or very limited. In this study, we present a benchmark, i.e., a series of laboratory experiments, to evaluate the MHD methods, which have been typically applied for steel CC process. Specifically, a rotating magnetic field (RMF) with variable intensity and frequency is considered. First experiment is performed to measure the distribution of magnetic field without any loaded sample (casting); the second experiment is conducted to measure the RMF-induced torque on a cylindrical sample (different metals/alloys in solid state); the third experiment is (based on a special device) to measure the RMF-induced rotational velocity of the liquid metal (Ga75In25), which is enclosed in a cylindrical crucible. The MHD calculation is performed by coupling ANSYS Maxwell and ANSYS Fluent. The Lorentz force, as calculated by analytical equations, ANSYS Fluent addon MHD module, and external electromagnetic solver, is added as the source term in Navier–Stokes equation. By comparing the simulation results with the benchmark experiments, the calculation accuracy with different coupling methods and modification strategies is evaluated. Based on this, a necessary simplification strategy of the MHD method for CC is established, and application of the simplified MHD method to a CC process is demonstrated. More... »

PAGES

1-16

References to SciGraph publications

  • 2009-10. Effect of the rotating magnetic field on the unidirectionally solidified macrostructure of Al6Si4Cu alloy in TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS
  • 2008-03-18. Efficient Melt Stirring Using Pulse Sequences of a Rotating Magnetic Field: Part II. Application to Solidification of Al-Si Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2009-08-28. Measurements of an unsteady liquid metal flow during spin-up driven by a rotating magnetic field in EXPERIMENTS IN FLUIDS
  • 1984-03. Electromagnetic Stirring and Continuous Casting — Achievements, Problems, and Goals in JOM
  • 2012-10-09. Numerical Simulation of Fluid Flow in a Round Bloom Mold with In-Mold Rotary Electromagnetic Stirring in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-10-30. Scale-Adaptive Simulation of Transient Two-Phase Flow in Continuous-Casting Mold in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1986-01. Rotational electromagnetic stirring in continuous casting of round strands in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2009-11-11. Influence of Forced/Natural Convection on Segregation During the Directional Solidification of Al-Based Binary Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2020-05-11. Effect of Electromagnetic Stirrer Position on Mold Metallurgical Behavior in a Continuously Cast Bloom in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1984-09. Structural effects and band segregate formation during the electromagnetic stirring of strand-cast steel in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-07-06. Generation of Reverse Meniscus Flow by Applying An Electromagnetic Brake in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-06-10. Three-Dimensional Macrosegregation Model of Bloom in Curved Continuous Casting Process in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2020-03-27. Modeling the Effect of Combined Electromagnetic Stirring Modes on Macrosegregation in Continuous Casting Blooms in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2016-08-17. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2012-02-14. Effect of Electromagnetic Ruler Braking (EMBr) on Transient Turbulent Flow in Continuous Slab Casting using Large Eddy Simulations in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2013-11-19. Study on the Macrosegregation Behavior for the Bloom Continuous Casting: Model Development and Validation in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2008-04-30. Efficient Melt Stirring Using Pulse Sequences of a Rotating Magnetic Field: Part I. Flow Field in a Liquid Metal Column in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2006-06. Rotating magnetic field-driven flows in conductive inhomogeneous media: Part I—Numerical study in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2011-05-17. Transient Turbulent Flow in a Liquid-Metal Model of Continuous Casting, Including Comparison of Six Different Methods in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2013-03-26. Liquid metal flows driven by rotating and traveling magnetic fields in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-022-02516-3

    DOI

    http://dx.doi.org/10.1007/s11663-022-02516-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147213867


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Haijie", 
            "id": "sg:person.010030252730.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010030252730.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Menghuai", 
            "id": "sg:person.011013013515.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013013515.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zhao", 
            "id": "sg:person.010011375773.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011375773.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ludwig", 
            "givenName": "Andreas", 
            "id": "sg:person.07447370143.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447370143.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria", 
              "id": "http://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kharicha", 
            "givenName": "Abdellah", 
            "id": "sg:person.012030433322.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012030433322.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemv\u00e1ros, Hungary", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemv\u00e1ros, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "R\u00f3naf\u00f6ldi", 
            "givenName": "Arnold", 
            "id": "sg:person.07521665231.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521665231.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemv\u00e1ros, Hungary", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemv\u00e1ros, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ro\u00f3sz", 
            "givenName": "Andr\u00e1s", 
            "id": "sg:person.0742664617.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742664617.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515, Miskolc Egyetemv\u00e1ros, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.10334.35", 
              "name": [
                "Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515, Miskolc Egyetemv\u00e1ros, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Veres", 
            "givenName": "Zsolt", 
            "id": "sg:person.012014550205.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014550205.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemv\u00e1ros, Hungary", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemv\u00e1ros, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sv\u00e9da", 
            "givenName": "M\u00e1ria", 
            "id": "sg:person.013777421542.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777421542.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11663-012-9737-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052154491", 
              "https://doi.org/10.1007/s11663-012-9737-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-008-9126-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045359086", 
              "https://doi.org/10.1007/s11663-008-9126-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2013-01801-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032059354", 
              "https://doi.org/10.1140/epjst/e2013-01801-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-020-01849-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127514790", 
              "https://doi.org/10.1007/s11663-020-01849-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-020-01827-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125954585", 
              "https://doi.org/10.1007/s11663-020-01827-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-012-9634-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029032977", 
              "https://doi.org/10.1007/s11663-012-9634-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03338405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007591484", 
              "https://doi.org/10.1007/bf03338405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-008-9147-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011620325", 
              "https://doi.org/10.1007/s11663-008-9147-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-013-9986-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003750761", 
              "https://doi.org/10.1007/s11663-013-9986-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-011-9526-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044728573", 
              "https://doi.org/10.1007/s11663-011-9526-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043934333", 
              "https://doi.org/10.1007/bf02670825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009707008", 
              "https://doi.org/10.1007/bf02657390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12666-009-0085-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036344457", 
              "https://doi.org/10.1007/s12666-009-0085-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02231-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138774571", 
              "https://doi.org/10.1007/s11663-021-02231-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-009-9311-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032529096", 
              "https://doi.org/10.1007/s11663-009-9311-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-016-0772-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030478246", 
              "https://doi.org/10.1007/s11663-016-0772-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-009-0735-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017402919", 
              "https://doi.org/10.1007/s00348-009-0735-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-018-1443-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107924456", 
              "https://doi.org/10.1007/s11663-018-1443-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02247-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139453491", 
              "https://doi.org/10.1007/s11663-021-02247-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-006-0020-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029652384", 
              "https://doi.org/10.1007/s11663-006-0020-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-19", 
        "datePublishedReg": "2022-04-19", 
        "description": "Electromagnetic stirring (EMS) has been recognized as a mature technique in steel industry to control the as-cast structure of steel continuous casting (CC), and computational magnetohydrodynamic (MHD) methods have been applied to study the EMS efficiency. Most MHD methods de-coupled the calculations of electromagnetic and flow fields or simplifications were made for the flow\u2013electromagnetic interactions. However, the experimental validations of the MHD modeling have been rarely reported or very limited. In this study, we present a benchmark, i.e., a series of laboratory experiments, to evaluate the MHD methods, which have been typically applied for steel CC process. Specifically, a rotating magnetic field (RMF) with variable intensity and frequency is considered. First experiment is performed to measure the distribution of magnetic field without any loaded sample (casting); the second experiment is conducted to measure the RMF-induced torque on a cylindrical sample (different metals/alloys in solid state); the third experiment is (based on a special device) to measure the RMF-induced rotational velocity of the liquid metal (Ga75In25), which is enclosed in a cylindrical crucible. The MHD calculation is performed by coupling ANSYS Maxwell and ANSYS Fluent. The Lorentz force, as calculated by analytical equations, ANSYS Fluent addon MHD module, and external electromagnetic solver, is added as the source term in Navier\u2013Stokes equation. By comparing the simulation results with the benchmark experiments, the calculation accuracy with different coupling methods and modification strategies is evaluated. Based on this, a necessary simplification strategy of the MHD method for CC is established, and application of the simplified MHD method to a CC process is demonstrated.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-022-02516-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "MHD method", 
          "continuous casting", 
          "electromagnetic stirring", 
          "magnetic field", 
          "MHD modeling", 
          "Navier-Stokes equations", 
          "CC process", 
          "steel continuous casting", 
          "MHD calculations", 
          "Lorentz force", 
          "source term", 
          "MHD module", 
          "analytical equations", 
          "ANSYS Fluent", 
          "ANSYS Maxwell", 
          "magnetohydrodynamic method", 
          "cast structure", 
          "electromagnetic solver", 
          "calculation accuracy", 
          "cylindrical crucible", 
          "liquid metal", 
          "rotational velocity", 
          "cylindrical samples", 
          "steel industry", 
          "equations", 
          "experimental validation", 
          "different coupling methods", 
          "loaded samples", 
          "simulation results", 
          "casting", 
          "coupling method", 
          "benchmark experiments", 
          "modification strategies", 
          "field", 
          "mature technique", 
          "laboratory experiments", 
          "modeling", 
          "solver", 
          "calculations", 
          "Maxwell", 
          "FLUENT", 
          "RMF", 
          "experimental evaluation", 
          "torque", 
          "EMS efficiency", 
          "simplification strategy", 
          "simplification", 
          "stirring", 
          "crucible", 
          "experiments", 
          "method", 
          "velocity", 
          "process", 
          "metals", 
          "efficiency", 
          "force", 
          "accuracy", 
          "module", 
          "distribution", 
          "benchmarks", 
          "applications", 
          "terms", 
          "industry", 
          "structure", 
          "technique", 
          "validation", 
          "frequency", 
          "samples", 
          "results", 
          "strategies", 
          "intensity", 
          "interaction", 
          "first experiment", 
          "series", 
          "variable intensity", 
          "evaluation", 
          "study", 
          "second experiment", 
          "third experiment"
        ], 
        "name": "Experimental Evaluation of MHD Modeling of EMS During Continuous Casting", 
        "pagination": "1-16", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147213867"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-022-02516-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-022-02516-3", 
          "https://app.dimensions.ai/details/publication/pub.1147213867"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_935.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-022-02516-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02516-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02516-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02516-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02516-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      22 PREDICATES      123 URIs      94 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-022-02516-3 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0914
    4 schema:author N7a3d4168dd194a6188f1cd6035aa75d4
    5 schema:citation sg:pub.10.1007/bf02657390
    6 sg:pub.10.1007/bf02670825
    7 sg:pub.10.1007/bf03338405
    8 sg:pub.10.1007/s00348-009-0735-1
    9 sg:pub.10.1007/s11663-006-0020-0
    10 sg:pub.10.1007/s11663-008-9126-x
    11 sg:pub.10.1007/s11663-008-9147-5
    12 sg:pub.10.1007/s11663-009-9311-6
    13 sg:pub.10.1007/s11663-011-9526-1
    14 sg:pub.10.1007/s11663-012-9634-6
    15 sg:pub.10.1007/s11663-012-9737-0
    16 sg:pub.10.1007/s11663-013-9986-6
    17 sg:pub.10.1007/s11663-016-0772-0
    18 sg:pub.10.1007/s11663-018-1443-0
    19 sg:pub.10.1007/s11663-020-01827-7
    20 sg:pub.10.1007/s11663-020-01849-1
    21 sg:pub.10.1007/s11663-021-02231-5
    22 sg:pub.10.1007/s11663-021-02247-x
    23 sg:pub.10.1007/s12666-009-0085-y
    24 sg:pub.10.1140/epjst/e2013-01801-8
    25 schema:datePublished 2022-04-19
    26 schema:datePublishedReg 2022-04-19
    27 schema:description Electromagnetic stirring (EMS) has been recognized as a mature technique in steel industry to control the as-cast structure of steel continuous casting (CC), and computational magnetohydrodynamic (MHD) methods have been applied to study the EMS efficiency. Most MHD methods de-coupled the calculations of electromagnetic and flow fields or simplifications were made for the flow–electromagnetic interactions. However, the experimental validations of the MHD modeling have been rarely reported or very limited. In this study, we present a benchmark, i.e., a series of laboratory experiments, to evaluate the MHD methods, which have been typically applied for steel CC process. Specifically, a rotating magnetic field (RMF) with variable intensity and frequency is considered. First experiment is performed to measure the distribution of magnetic field without any loaded sample (casting); the second experiment is conducted to measure the RMF-induced torque on a cylindrical sample (different metals/alloys in solid state); the third experiment is (based on a special device) to measure the RMF-induced rotational velocity of the liquid metal (Ga75In25), which is enclosed in a cylindrical crucible. The MHD calculation is performed by coupling ANSYS Maxwell and ANSYS Fluent. The Lorentz force, as calculated by analytical equations, ANSYS Fluent addon MHD module, and external electromagnetic solver, is added as the source term in Navier–Stokes equation. By comparing the simulation results with the benchmark experiments, the calculation accuracy with different coupling methods and modification strategies is evaluated. Based on this, a necessary simplification strategy of the MHD method for CC is established, and application of the simplified MHD method to a CC process is demonstrated.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf sg:journal.1136775
    32 schema:keywords ANSYS Fluent
    33 ANSYS Maxwell
    34 CC process
    35 EMS efficiency
    36 FLUENT
    37 Lorentz force
    38 MHD calculations
    39 MHD method
    40 MHD modeling
    41 MHD module
    42 Maxwell
    43 Navier-Stokes equations
    44 RMF
    45 accuracy
    46 analytical equations
    47 applications
    48 benchmark experiments
    49 benchmarks
    50 calculation accuracy
    51 calculations
    52 cast structure
    53 casting
    54 continuous casting
    55 coupling method
    56 crucible
    57 cylindrical crucible
    58 cylindrical samples
    59 different coupling methods
    60 distribution
    61 efficiency
    62 electromagnetic solver
    63 electromagnetic stirring
    64 equations
    65 evaluation
    66 experimental evaluation
    67 experimental validation
    68 experiments
    69 field
    70 first experiment
    71 force
    72 frequency
    73 industry
    74 intensity
    75 interaction
    76 laboratory experiments
    77 liquid metal
    78 loaded samples
    79 magnetic field
    80 magnetohydrodynamic method
    81 mature technique
    82 metals
    83 method
    84 modeling
    85 modification strategies
    86 module
    87 process
    88 results
    89 rotational velocity
    90 samples
    91 second experiment
    92 series
    93 simplification
    94 simplification strategy
    95 simulation results
    96 solver
    97 source term
    98 steel continuous casting
    99 steel industry
    100 stirring
    101 strategies
    102 structure
    103 study
    104 technique
    105 terms
    106 third experiment
    107 torque
    108 validation
    109 variable intensity
    110 velocity
    111 schema:name Experimental Evaluation of MHD Modeling of EMS During Continuous Casting
    112 schema:pagination 1-16
    113 schema:productId N040d5af52a4d4fe08f7607ee5f06b235
    114 N81484ea1c3bb42568efeff2be70c45a6
    115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147213867
    116 https://doi.org/10.1007/s11663-022-02516-3
    117 schema:sdDatePublished 2022-06-01T22:25
    118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    119 schema:sdPublisher N910976ff47424821aefb83721ba58790
    120 schema:url https://doi.org/10.1007/s11663-022-02516-3
    121 sgo:license sg:explorer/license/
    122 sgo:sdDataset articles
    123 rdf:type schema:ScholarlyArticle
    124 N040d5af52a4d4fe08f7607ee5f06b235 schema:name dimensions_id
    125 schema:value pub.1147213867
    126 rdf:type schema:PropertyValue
    127 N18ab33c37ccf4b5fb11ac802e6474a07 rdf:first sg:person.0742664617.39
    128 rdf:rest N7e268f695e674927ad2ede734942587a
    129 N3580274fd46b4d0e965918f0510cc4d2 rdf:first sg:person.013777421542.05
    130 rdf:rest rdf:nil
    131 N3acfbf0bb43c42d7a89908e87aec0781 rdf:first sg:person.07521665231.73
    132 rdf:rest N18ab33c37ccf4b5fb11ac802e6474a07
    133 N7a3d4168dd194a6188f1cd6035aa75d4 rdf:first sg:person.010030252730.44
    134 rdf:rest Nf3cd7ec2174144e480a98cdf6ba93599
    135 N7e268f695e674927ad2ede734942587a rdf:first sg:person.012014550205.83
    136 rdf:rest N3580274fd46b4d0e965918f0510cc4d2
    137 N81484ea1c3bb42568efeff2be70c45a6 schema:name doi
    138 schema:value 10.1007/s11663-022-02516-3
    139 rdf:type schema:PropertyValue
    140 N910976ff47424821aefb83721ba58790 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 Nb8512cad7f804a4b8265deec6387036a rdf:first sg:person.07447370143.06
    143 rdf:rest Ndbf897d56b434839903a1b101dd5a3ce
    144 Ndbf897d56b434839903a1b101dd5a3ce rdf:first sg:person.012030433322.88
    145 rdf:rest N3acfbf0bb43c42d7a89908e87aec0781
    146 Nf3cd7ec2174144e480a98cdf6ba93599 rdf:first sg:person.011013013515.25
    147 rdf:rest Nf91d09c4de754c2795296c4df7d369ff
    148 Nf91d09c4de754c2795296c4df7d369ff rdf:first sg:person.010011375773.72
    149 rdf:rest Nb8512cad7f804a4b8265deec6387036a
    150 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Engineering
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Chemical Engineering
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Resources Engineering and Extractive Metallurgy
    158 rdf:type schema:DefinedTerm
    159 sg:journal.1136775 schema:issn 1073-5615
    160 1543-1916
    161 schema:name Metallurgical and Materials Transactions B
    162 schema:publisher Springer Nature
    163 rdf:type schema:Periodical
    164 sg:person.010011375773.72 schema:affiliation grid-institutes:grid.181790.6
    165 schema:familyName Zhang
    166 schema:givenName Zhao
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011375773.72
    168 rdf:type schema:Person
    169 sg:person.010030252730.44 schema:affiliation grid-institutes:grid.181790.6
    170 schema:familyName Zhang
    171 schema:givenName Haijie
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010030252730.44
    173 rdf:type schema:Person
    174 sg:person.011013013515.25 schema:affiliation grid-institutes:grid.181790.6
    175 schema:familyName Wu
    176 schema:givenName Menghuai
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013013515.25
    178 rdf:type schema:Person
    179 sg:person.012014550205.83 schema:affiliation grid-institutes:grid.10334.35
    180 schema:familyName Veres
    181 schema:givenName Zsolt
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014550205.83
    183 rdf:type schema:Person
    184 sg:person.012030433322.88 schema:affiliation grid-institutes:grid.181790.6
    185 schema:familyName Kharicha
    186 schema:givenName Abdellah
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012030433322.88
    188 rdf:type schema:Person
    189 sg:person.013777421542.05 schema:affiliation grid-institutes:None
    190 schema:familyName Svéda
    191 schema:givenName Mária
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777421542.05
    193 rdf:type schema:Person
    194 sg:person.0742664617.39 schema:affiliation grid-institutes:None
    195 schema:familyName Roósz
    196 schema:givenName András
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742664617.39
    198 rdf:type schema:Person
    199 sg:person.07447370143.06 schema:affiliation grid-institutes:grid.181790.6
    200 schema:familyName Ludwig
    201 schema:givenName Andreas
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447370143.06
    203 rdf:type schema:Person
    204 sg:person.07521665231.73 schema:affiliation grid-institutes:None
    205 schema:familyName Rónaföldi
    206 schema:givenName Arnold
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521665231.73
    208 rdf:type schema:Person
    209 sg:pub.10.1007/bf02657390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009707008
    210 https://doi.org/10.1007/bf02657390
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf02670825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043934333
    213 https://doi.org/10.1007/bf02670825
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf03338405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007591484
    216 https://doi.org/10.1007/bf03338405
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s00348-009-0735-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017402919
    219 https://doi.org/10.1007/s00348-009-0735-1
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s11663-006-0020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029652384
    222 https://doi.org/10.1007/s11663-006-0020-0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s11663-008-9126-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045359086
    225 https://doi.org/10.1007/s11663-008-9126-x
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s11663-008-9147-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011620325
    228 https://doi.org/10.1007/s11663-008-9147-5
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s11663-009-9311-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032529096
    231 https://doi.org/10.1007/s11663-009-9311-6
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s11663-011-9526-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044728573
    234 https://doi.org/10.1007/s11663-011-9526-1
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s11663-012-9634-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029032977
    237 https://doi.org/10.1007/s11663-012-9634-6
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s11663-012-9737-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052154491
    240 https://doi.org/10.1007/s11663-012-9737-0
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11663-013-9986-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003750761
    243 https://doi.org/10.1007/s11663-013-9986-6
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11663-016-0772-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030478246
    246 https://doi.org/10.1007/s11663-016-0772-0
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s11663-018-1443-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107924456
    249 https://doi.org/10.1007/s11663-018-1443-0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s11663-020-01827-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125954585
    252 https://doi.org/10.1007/s11663-020-01827-7
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s11663-020-01849-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127514790
    255 https://doi.org/10.1007/s11663-020-01849-1
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s11663-021-02231-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138774571
    258 https://doi.org/10.1007/s11663-021-02231-5
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s11663-021-02247-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1139453491
    261 https://doi.org/10.1007/s11663-021-02247-x
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s12666-009-0085-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036344457
    264 https://doi.org/10.1007/s12666-009-0085-y
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1140/epjst/e2013-01801-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032059354
    267 https://doi.org/10.1140/epjst/e2013-01801-8
    268 rdf:type schema:CreativeWork
    269 grid-institutes:None schema:alternateName MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemváros, Hungary
    270 schema:name MTA-ME Materials Science Research Group, ELKH, 3515, Miskolc Egyetemváros, Hungary
    271 rdf:type schema:Organization
    272 grid-institutes:grid.10334.35 schema:alternateName Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515, Miskolc Egyetemváros, Hungary
    273 schema:name Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515, Miskolc Egyetemváros, Hungary
    274 rdf:type schema:Organization
    275 grid-institutes:grid.181790.6 schema:alternateName Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria
    276 schema:name Chair of simulation and modelling metallurgical processes, Metallurgy Department, Montanuniversitaet Leoben, Franz-Josef Street 18, 8700, Leoben, Austria
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...