Investigation into the Temperature of Metallic High-Temperature Confocal Scanning Laser Microscope Samples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-28

AUTHORS

Steven Thomas Britt, Petrus Christiaan Pistorius

ABSTRACT

In high-temperature confocal scanning laser microscopy, the top of the opaque sample is observed while being heated by thermal radiation from an incandescent heating element, reflected from the inside of an ellipsoidal chamber. The temperature is measured with a thermocouple in the sample holder. The true temperature at the top of the sample differs from the measured temperature because of thermal contact resistance (between the metallic sample and the crucible, and between the crucible and the sample holder) and because of temperature gradients within the sample. Assessment of these differences is important for accurate experiments. The method of accounting for the difference between the true sample temperature and the measured temperature was found to have an error of ± 12.5 °C when melting pure metals in MgO crucibles. Temperature gradients within the sample were investigated by observing MgO particles flowing on liquid iron and comparison with a finite element model. Particles near the top of the droplet had median velocities around 20 μm/s. The model (which included radiative heating) predicted a velocity of 3 mm/s with temperature difference of 1.2 °C over the droplet height. The real droplet is expected to have a difference of less than 1 °C. More... »

PAGES

1-13

References to SciGraph publications

  • 2016-08-25. In SituObservation of MgO Inclusions in Liquid Iron-Aluminum Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-02-04. Mass Transfer in High-Temperature Laser Confocal Microscopy in TMS 2018 147TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS
  • 2019-02-09. In Situ Observation on the Interactions of Nonmetallic Inclusions on the Surface of Liquid Steel in ADVANCED REAL TIME IMAGING II
  • 2019-02-09. Dissolution of Sapphire and Alumina–Magnesia Particles in CaO–SiO2–Al2O3 Liquid Slags in ADVANCED REAL TIME IMAGING II
  • 1998-05. Spectral and Total Emissivity of High-Temperature Materials in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2021-04-02. Isothermal and Non-isothermal Crystallization Kinetics of Mold Fluxes used in Continuous Casting of Steel: A Review in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2021-06-05. Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel in INTERNATIONAL JOURNAL OF MINERALS, METALLURGY AND MATERIALS
  • 2018-05-07. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels in JOM
  • 2020-10-27. Catalytic graphitization of Glassy Carbon by Molten Fe-Csat in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-05-02. Quantitative and Qualitative Aspects of Gas–Metal–Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy in JOM
  • 2022-01-21. Dissolution of SiO2 Inclusions in CaO-SiO2-Based Slags In Situ Observed Using High-Temperature Confocal Scanning Laser Microscopy in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2020-10-09. Diversified Aggregated Patterns of Alumina Inclusions in High-Al Iron Melt in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2020-08-26. In Situ Observation of the MnS Precipitation Behavior in High-Sulfur Microalloyed Steel Under Different Cooling Rates in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2003-10. Marangoni flow at the gas/melt interface of steel in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1995-04. Size dependent hardness of silver single crystals in JOURNAL OF MATERIALS RESEARCH
  • 2005-11. In-situ observed dynamics of peritectic solidification and δ/γ transformation of Fe-3 to 5 At. pct Ni alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-022-02515-4

    DOI

    http://dx.doi.org/10.1007/s11663-022-02515-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147471373


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Iron and Steelmaking Research (CISR), Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.147455.6", 
              "name": [
                "Center for Iron and Steelmaking Research (CISR), Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Britt", 
            "givenName": "Steven Thomas", 
            "id": "sg:person.010441305605.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441305605.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Iron and Steelmaking Research (CISR), Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.147455.6", 
              "name": [
                "Center for Iron and Steelmaking Research (CISR), Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pistorius", 
            "givenName": "Petrus Christiaan", 
            "id": "sg:person.016416274304.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416274304.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12613-020-2092-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138636799", 
              "https://doi.org/10.1007/s12613-020-2092-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-020-01946-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130363511", 
              "https://doi.org/10.1007/s11663-020-01946-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-018-2875-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103769515", 
              "https://doi.org/10.1007/s11837-018-2875-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-020-01978-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131565094", 
              "https://doi.org/10.1007/s11663-020-01978-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-016-0794-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037681649", 
              "https://doi.org/10.1007/s11663-016-0794-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-018-2885-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103851960", 
              "https://doi.org/10.1007/s11837-018-2885-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02099-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136888044", 
              "https://doi.org/10.1007/s11663-021-02099-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-06143-2_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112027097", 
              "https://doi.org/10.1007/978-3-030-06143-2_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-020-02003-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132062296", 
              "https://doi.org/10.1007/s11663-020-02003-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-003-0015-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037713082", 
              "https://doi.org/10.1007/s11663-003-0015-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022607426413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001621843", 
              "https://doi.org/10.1023/a:1022607426413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-021-02401-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1144820932", 
              "https://doi.org/10.1007/s11663-021-02401-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-72526-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100789818", 
              "https://doi.org/10.1007/978-3-319-72526-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-06143-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112027092", 
              "https://doi.org/10.1007/978-3-030-06143-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1995.0853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023161386", 
              "https://doi.org/10.1557/jmr.1995.0853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-005-0078-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015774030", 
              "https://doi.org/10.1007/s11661-005-0078-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-28", 
        "datePublishedReg": "2022-04-28", 
        "description": "In high-temperature confocal scanning laser microscopy, the top of the opaque sample is observed while being heated by thermal radiation from an incandescent heating element, reflected from the inside of an ellipsoidal chamber. The temperature is measured with a thermocouple in the sample holder. The true temperature at the top of the sample differs from the measured temperature because of thermal contact resistance (between the metallic sample and the crucible, and between the crucible and the sample holder) and because of temperature gradients within the sample. Assessment of these differences is important for accurate experiments. The method of accounting for the difference between the true sample temperature and the measured temperature was found to have an error of \u00b1 12.5 \u00b0C when melting pure metals in MgO crucibles. Temperature gradients within the sample were investigated by observing MgO particles flowing on liquid iron and comparison with a finite element model. Particles near the top of the droplet had median velocities around 20 \u03bcm/s. The model (which included radiative heating) predicted a velocity of 3\u00a0mm/s with temperature difference of 1.2 \u00b0C over the droplet height. The real droplet is expected to have a difference of less than 1 \u00b0C.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-022-02515-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "high-temperature confocal scanning laser microscopy", 
          "measured temperature", 
          "temperature gradient", 
          "thermal contact resistance", 
          "finite element model", 
          "heating element", 
          "element model", 
          "contact resistance", 
          "droplet height", 
          "MgO particles", 
          "thermal radiation", 
          "temperature difference", 
          "true sample temperature", 
          "real droplets", 
          "true temperature", 
          "MgO crucible", 
          "pure metals", 
          "liquid iron", 
          "sample holder", 
          "sample temperature", 
          "opaque samples", 
          "temperature", 
          "droplets", 
          "velocity", 
          "microscope samples", 
          "particles", 
          "accurate experiments", 
          "thermocouples", 
          "confocal scanning laser microscopy", 
          "scanning laser microscopy", 
          "top", 
          "crucible", 
          "gradient", 
          "metals", 
          "laser microscopy", 
          "microscopy", 
          "model", 
          "ellipsoidal chamber", 
          "chamber", 
          "height", 
          "error", 
          "resistance", 
          "iron", 
          "median velocity", 
          "inside", 
          "samples", 
          "holder", 
          "experiments", 
          "method", 
          "investigation", 
          "radiation", 
          "elements", 
          "comparison", 
          "differences", 
          "assessment"
        ], 
        "name": "Investigation into the Temperature of Metallic High-Temperature Confocal Scanning Laser Microscope Samples", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147471373"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-022-02515-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-022-02515-4", 
          "https://app.dimensions.ai/details/publication/pub.1147471373"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_939.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-022-02515-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02515-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02515-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02515-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02515-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      22 PREDICATES      94 URIs      70 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-022-02515-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N742bc003f230486f822aa6431a87e31a
    4 schema:citation sg:pub.10.1007/978-3-030-06143-2_2
    5 sg:pub.10.1007/978-3-030-06143-2_7
    6 sg:pub.10.1007/978-3-319-72526-0_18
    7 sg:pub.10.1007/s11661-005-0078-3
    8 sg:pub.10.1007/s11663-003-0015-z
    9 sg:pub.10.1007/s11663-016-0794-7
    10 sg:pub.10.1007/s11663-020-01946-1
    11 sg:pub.10.1007/s11663-020-01978-7
    12 sg:pub.10.1007/s11663-020-02003-7
    13 sg:pub.10.1007/s11663-021-02099-5
    14 sg:pub.10.1007/s11663-021-02401-5
    15 sg:pub.10.1007/s11837-018-2875-3
    16 sg:pub.10.1007/s11837-018-2885-1
    17 sg:pub.10.1007/s12613-020-2092-2
    18 sg:pub.10.1023/a:1022607426413
    19 sg:pub.10.1557/jmr.1995.0853
    20 schema:datePublished 2022-04-28
    21 schema:datePublishedReg 2022-04-28
    22 schema:description In high-temperature confocal scanning laser microscopy, the top of the opaque sample is observed while being heated by thermal radiation from an incandescent heating element, reflected from the inside of an ellipsoidal chamber. The temperature is measured with a thermocouple in the sample holder. The true temperature at the top of the sample differs from the measured temperature because of thermal contact resistance (between the metallic sample and the crucible, and between the crucible and the sample holder) and because of temperature gradients within the sample. Assessment of these differences is important for accurate experiments. The method of accounting for the difference between the true sample temperature and the measured temperature was found to have an error of ± 12.5 °C when melting pure metals in MgO crucibles. Temperature gradients within the sample were investigated by observing MgO particles flowing on liquid iron and comparison with a finite element model. Particles near the top of the droplet had median velocities around 20 μm/s. The model (which included radiative heating) predicted a velocity of 3 mm/s with temperature difference of 1.2 °C over the droplet height. The real droplet is expected to have a difference of less than 1 °C.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf sg:journal.1136775
    27 schema:keywords MgO crucible
    28 MgO particles
    29 accurate experiments
    30 assessment
    31 chamber
    32 comparison
    33 confocal scanning laser microscopy
    34 contact resistance
    35 crucible
    36 differences
    37 droplet height
    38 droplets
    39 element model
    40 elements
    41 ellipsoidal chamber
    42 error
    43 experiments
    44 finite element model
    45 gradient
    46 heating element
    47 height
    48 high-temperature confocal scanning laser microscopy
    49 holder
    50 inside
    51 investigation
    52 iron
    53 laser microscopy
    54 liquid iron
    55 measured temperature
    56 median velocity
    57 metals
    58 method
    59 microscope samples
    60 microscopy
    61 model
    62 opaque samples
    63 particles
    64 pure metals
    65 radiation
    66 real droplets
    67 resistance
    68 sample holder
    69 sample temperature
    70 samples
    71 scanning laser microscopy
    72 temperature
    73 temperature difference
    74 temperature gradient
    75 thermal contact resistance
    76 thermal radiation
    77 thermocouples
    78 top
    79 true sample temperature
    80 true temperature
    81 velocity
    82 schema:name Investigation into the Temperature of Metallic High-Temperature Confocal Scanning Laser Microscope Samples
    83 schema:pagination 1-13
    84 schema:productId Nb230ea87aea9407d9fb2d2bdf1eed11b
    85 Nb541c378cd4c46e1abe3559c3016c4e3
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147471373
    87 https://doi.org/10.1007/s11663-022-02515-4
    88 schema:sdDatePublished 2022-06-01T22:24
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N9a72c1202f2c47cd9dcdbce7d45ef16a
    91 schema:url https://doi.org/10.1007/s11663-022-02515-4
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N742bc003f230486f822aa6431a87e31a rdf:first sg:person.010441305605.78
    96 rdf:rest N871fdc47bece490f9adbcee963cee08a
    97 N871fdc47bece490f9adbcee963cee08a rdf:first sg:person.016416274304.80
    98 rdf:rest rdf:nil
    99 N9a72c1202f2c47cd9dcdbce7d45ef16a schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Nb230ea87aea9407d9fb2d2bdf1eed11b schema:name doi
    102 schema:value 10.1007/s11663-022-02515-4
    103 rdf:type schema:PropertyValue
    104 Nb541c378cd4c46e1abe3559c3016c4e3 schema:name dimensions_id
    105 schema:value pub.1147471373
    106 rdf:type schema:PropertyValue
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1136775 schema:issn 1073-5615
    114 1543-1916
    115 schema:name Metallurgical and Materials Transactions B
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.010441305605.78 schema:affiliation grid-institutes:grid.147455.6
    119 schema:familyName Britt
    120 schema:givenName Steven Thomas
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441305605.78
    122 rdf:type schema:Person
    123 sg:person.016416274304.80 schema:affiliation grid-institutes:grid.147455.6
    124 schema:familyName Pistorius
    125 schema:givenName Petrus Christiaan
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416274304.80
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-3-030-06143-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112027092
    129 https://doi.org/10.1007/978-3-030-06143-2_2
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-030-06143-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112027097
    132 https://doi.org/10.1007/978-3-030-06143-2_7
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-319-72526-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100789818
    135 https://doi.org/10.1007/978-3-319-72526-0_18
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11661-005-0078-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015774030
    138 https://doi.org/10.1007/s11661-005-0078-3
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s11663-003-0015-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037713082
    141 https://doi.org/10.1007/s11663-003-0015-z
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11663-016-0794-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037681649
    144 https://doi.org/10.1007/s11663-016-0794-7
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s11663-020-01946-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130363511
    147 https://doi.org/10.1007/s11663-020-01946-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s11663-020-01978-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131565094
    150 https://doi.org/10.1007/s11663-020-01978-7
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11663-020-02003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132062296
    153 https://doi.org/10.1007/s11663-020-02003-7
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11663-021-02099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136888044
    156 https://doi.org/10.1007/s11663-021-02099-5
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11663-021-02401-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144820932
    159 https://doi.org/10.1007/s11663-021-02401-5
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11837-018-2875-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103769515
    162 https://doi.org/10.1007/s11837-018-2875-3
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s11837-018-2885-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103851960
    165 https://doi.org/10.1007/s11837-018-2885-1
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s12613-020-2092-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138636799
    168 https://doi.org/10.1007/s12613-020-2092-2
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1023/a:1022607426413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001621843
    171 https://doi.org/10.1023/a:1022607426413
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1557/jmr.1995.0853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023161386
    174 https://doi.org/10.1557/jmr.1995.0853
    175 rdf:type schema:CreativeWork
    176 grid-institutes:grid.147455.6 schema:alternateName Center for Iron and Steelmaking Research (CISR), Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
    177 schema:name Center for Iron and Steelmaking Research (CISR), Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...