Ontology type: schema:ScholarlyArticle Open Access: True
2022-04-16
AUTHORSTrine A. Larssen, Merete Tangstad
ABSTRACTThe ore–gas reactions in the prereduction zone in a ferromanganese furnace are largely decisive of the overall energy efficiency, carbon consumption, and climate gas emissions in ferromanganese production. An increased understanding of the prereduction zone is thus vital for optimization of the furnace operation. The ore–gas reactions are well known to be governed by kinetics rather than thermodynamics. The raw materials contain various amounts of both chemically bound and surface moisture when fed to the furnace, which may influence the reaction kinetics. This paper presents the investigation of the potential influence of moisture on the prereduction kinetics of two commercial manganese ores, i.e., Comilog and Nchwaning. TGA experiments were carried out by comparing dry and wet ore, as well as introducing H2(g) or H2O(g) to the CO–CO2 gas mixture. More... »
PAGES1-13
http://scigraph.springernature.com/pub.10.1007/s11663-022-02511-8
DOIhttp://dx.doi.org/10.1007/s11663-022-02511-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147164529
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Resources Engineering and Extractive Metallurgy",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway",
"id": "http://www.grid.ac/institutes/grid.5947.f",
"name": [
"SINTEF, 7034, Trondheim, Norway",
"Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway"
],
"type": "Organization"
},
"familyName": "Larssen",
"givenName": "Trine A.",
"id": "sg:person.013354202740.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354202740.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "SINTEF, 7034, Trondheim, Norway",
"id": "http://www.grid.ac/institutes/grid.4319.f",
"name": [
"SINTEF, 7034, Trondheim, Norway"
],
"type": "Organization"
},
"familyName": "Tangstad",
"givenName": "Merete",
"id": "sg:person.010234410271.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234410271.91"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02642919",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085599003",
"https://doi.org/10.1007/bf02642919"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11837-016-2149-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051392581",
"https://doi.org/10.1007/s11837-016-2149-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11663-020-02018-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1132783223",
"https://doi.org/10.1007/s11663-020-02018-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-16",
"datePublishedReg": "2022-04-16",
"description": "The ore\u2013gas reactions in the prereduction zone in a ferromanganese furnace are largely decisive of the overall energy efficiency, carbon consumption, and climate gas emissions in ferromanganese production. An increased understanding of the prereduction zone is thus vital for optimization of the furnace operation. The ore\u2013gas reactions are well known to be governed by kinetics rather than thermodynamics. The raw materials contain various amounts of both chemically bound and surface moisture when fed to the furnace, which may influence the reaction kinetics. This paper presents the investigation of the potential influence of moisture on the prereduction kinetics of two commercial manganese ores, i.e., Comilog and Nchwaning. TGA experiments were carried out by comparing dry and wet ore, as well as introducing H2(g) or H2O(g) to the CO\u2013CO2 gas mixture.",
"genre": "article",
"id": "sg:pub.10.1007/s11663-022-02511-8",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6457746",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136775",
"issn": [
"1073-5615",
"1543-1916"
],
"name": "Metallurgical and Materials Transactions B",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"manganese ore",
"water gas shift reaction",
"CO-CO2 gas mixtures",
"overall energy efficiency",
"effect of moisture",
"furnace operation",
"ferromanganese production",
"ferromanganese furnace",
"shift reaction",
"surface moisture",
"gas mixture",
"TGA experiments",
"energy efficiency",
"climate gas emissions",
"reaction kinetics",
"furnace",
"gas emissions",
"raw materials",
"Comilog",
"carbon consumption",
"ore",
"moisture",
"kinetics",
"reaction",
"zone",
"hydrogen",
"materials",
"optimization",
"operation",
"efficiency",
"emission",
"mixture",
"behavior",
"consumption",
"thermodynamics",
"influence",
"experiments",
"investigation",
"amount",
"effect",
"production",
"understanding",
"potential influence",
"paper"
],
"name": "Effect of Moisture, Hydrogen, and Water\u2013Gas Shift Reaction on the Prereduction Behavior of Comilog and Nchwaning Manganese Ores",
"pagination": "1-13",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147164529"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11663-022-02511-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11663-022-02511-8",
"https://app.dimensions.ai/details/publication/pub.1147164529"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_931.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11663-022-02511-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02511-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02511-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02511-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02511-8'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
22 PREDICATES
70 URIs
59 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11663-022-02511-8 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0914 |
3 | ″ | schema:author | Nd7fda4658abb4317868af94acbab52e2 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02642919 |
5 | ″ | ″ | sg:pub.10.1007/s11663-020-02018-0 |
6 | ″ | ″ | sg:pub.10.1007/s11837-016-2149-x |
7 | ″ | schema:datePublished | 2022-04-16 |
8 | ″ | schema:datePublishedReg | 2022-04-16 |
9 | ″ | schema:description | The ore–gas reactions in the prereduction zone in a ferromanganese furnace are largely decisive of the overall energy efficiency, carbon consumption, and climate gas emissions in ferromanganese production. An increased understanding of the prereduction zone is thus vital for optimization of the furnace operation. The ore–gas reactions are well known to be governed by kinetics rather than thermodynamics. The raw materials contain various amounts of both chemically bound and surface moisture when fed to the furnace, which may influence the reaction kinetics. This paper presents the investigation of the potential influence of moisture on the prereduction kinetics of two commercial manganese ores, i.e., Comilog and Nchwaning. TGA experiments were carried out by comparing dry and wet ore, as well as introducing H2(g) or H2O(g) to the CO–CO2 gas mixture. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | sg:journal.1136775 |
14 | ″ | schema:keywords | CO-CO2 gas mixtures |
15 | ″ | ″ | Comilog |
16 | ″ | ″ | TGA experiments |
17 | ″ | ″ | amount |
18 | ″ | ″ | behavior |
19 | ″ | ″ | carbon consumption |
20 | ″ | ″ | climate gas emissions |
21 | ″ | ″ | consumption |
22 | ″ | ″ | effect |
23 | ″ | ″ | effect of moisture |
24 | ″ | ″ | efficiency |
25 | ″ | ″ | emission |
26 | ″ | ″ | energy efficiency |
27 | ″ | ″ | experiments |
28 | ″ | ″ | ferromanganese furnace |
29 | ″ | ″ | ferromanganese production |
30 | ″ | ″ | furnace |
31 | ″ | ″ | furnace operation |
32 | ″ | ″ | gas emissions |
33 | ″ | ″ | gas mixture |
34 | ″ | ″ | hydrogen |
35 | ″ | ″ | influence |
36 | ″ | ″ | investigation |
37 | ″ | ″ | kinetics |
38 | ″ | ″ | manganese ore |
39 | ″ | ″ | materials |
40 | ″ | ″ | mixture |
41 | ″ | ″ | moisture |
42 | ″ | ″ | operation |
43 | ″ | ″ | optimization |
44 | ″ | ″ | ore |
45 | ″ | ″ | overall energy efficiency |
46 | ″ | ″ | paper |
47 | ″ | ″ | potential influence |
48 | ″ | ″ | production |
49 | ″ | ″ | raw materials |
50 | ″ | ″ | reaction |
51 | ″ | ″ | reaction kinetics |
52 | ″ | ″ | shift reaction |
53 | ″ | ″ | surface moisture |
54 | ″ | ″ | thermodynamics |
55 | ″ | ″ | understanding |
56 | ″ | ″ | water gas shift reaction |
57 | ″ | ″ | zone |
58 | ″ | schema:name | Effect of Moisture, Hydrogen, and Water–Gas Shift Reaction on the Prereduction Behavior of Comilog and Nchwaning Manganese Ores |
59 | ″ | schema:pagination | 1-13 |
60 | ″ | schema:productId | N57e2ed843bb34a3aaa6c9b7bf01c2b0f |
61 | ″ | ″ | N8dea07465be247839136d1e22e951b41 |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1147164529 |
63 | ″ | ″ | https://doi.org/10.1007/s11663-022-02511-8 |
64 | ″ | schema:sdDatePublished | 2022-06-01T22:23 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | N8108775caa514ee4a55a2fcba2f8967b |
67 | ″ | schema:url | https://doi.org/10.1007/s11663-022-02511-8 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | articles |
70 | ″ | rdf:type | schema:ScholarlyArticle |
71 | N57e2ed843bb34a3aaa6c9b7bf01c2b0f | schema:name | dimensions_id |
72 | ″ | schema:value | pub.1147164529 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N8108775caa514ee4a55a2fcba2f8967b | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | N8dea07465be247839136d1e22e951b41 | schema:name | doi |
77 | ″ | schema:value | 10.1007/s11663-022-02511-8 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | Nd7fda4658abb4317868af94acbab52e2 | rdf:first | sg:person.013354202740.22 |
80 | ″ | rdf:rest | Ne2e4d6698ece46418a39330982dc3811 |
81 | Ne2e4d6698ece46418a39330982dc3811 | rdf:first | sg:person.010234410271.91 |
82 | ″ | rdf:rest | rdf:nil |
83 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
84 | ″ | schema:name | Engineering |
85 | ″ | rdf:type | schema:DefinedTerm |
86 | anzsrc-for:0914 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Resources Engineering and Extractive Metallurgy |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | sg:grant.6457746 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11663-022-02511-8 |
90 | ″ | rdf:type | schema:MonetaryGrant |
91 | sg:journal.1136775 | schema:issn | 1073-5615 |
92 | ″ | ″ | 1543-1916 |
93 | ″ | schema:name | Metallurgical and Materials Transactions B |
94 | ″ | schema:publisher | Springer Nature |
95 | ″ | rdf:type | schema:Periodical |
96 | sg:person.010234410271.91 | schema:affiliation | grid-institutes:grid.4319.f |
97 | ″ | schema:familyName | Tangstad |
98 | ″ | schema:givenName | Merete |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234410271.91 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.013354202740.22 | schema:affiliation | grid-institutes:grid.5947.f |
102 | ″ | schema:familyName | Larssen |
103 | ″ | schema:givenName | Trine A. |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354202740.22 |
105 | ″ | rdf:type | schema:Person |
106 | sg:pub.10.1007/bf02642919 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085599003 |
107 | ″ | ″ | https://doi.org/10.1007/bf02642919 |
108 | ″ | rdf:type | schema:CreativeWork |
109 | sg:pub.10.1007/s11663-020-02018-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1132783223 |
110 | ″ | ″ | https://doi.org/10.1007/s11663-020-02018-0 |
111 | ″ | rdf:type | schema:CreativeWork |
112 | sg:pub.10.1007/s11837-016-2149-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051392581 |
113 | ″ | ″ | https://doi.org/10.1007/s11837-016-2149-x |
114 | ″ | rdf:type | schema:CreativeWork |
115 | grid-institutes:grid.4319.f | schema:alternateName | SINTEF, 7034, Trondheim, Norway |
116 | ″ | schema:name | SINTEF, 7034, Trondheim, Norway |
117 | ″ | rdf:type | schema:Organization |
118 | grid-institutes:grid.5947.f | schema:alternateName | Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway |
119 | ″ | schema:name | Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway |
120 | ″ | ″ | SINTEF, 7034, Trondheim, Norway |
121 | ″ | rdf:type | schema:Organization |