Varied Modification Mechanisms of Sr and Sb Under Diverse Cooling Rates on Primary Mg2Si in an Al-20Mg2Si Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-12

AUTHORS

Chao Li, Ming-Chuang Zhao, Hai-Long Jia, Cheng Wang, Pin-Kui Ma, Min Zha, Hui-Yuan Wang

ABSTRACT

Unraveling the varied modification mechanisms of trace elements under diverse cooling rates is of great importance to regulate the morphology of primary Mg2Si in hypereutectic Al-Mg2Si alloys. In the present work, the modification mechanisms of Sr and Sb in Al-20Mg2Si alloys under different cooling rates are discussed in detail. Increasing the cooling rates from ~ 50 to 76 °C/s to ~ 213 to 230 °C/s leads to the morphology transition of primary Mg2Si from hoppers to dendrites, which is attributed to a smaller constitutional zone with the increase of temperature gradients introduced by high cooling rates. The addition of 0.15 wt pct Sr modifies the morphology of primary Mg2Si phase to cubes at cooling rates of ~ 50 to 76 °C/s and ~ 213 to 230 °C/s with the same modification mechanism, i.e., by increasing nucleation driving force for primary Mg2Si and the adsorption-poisoning effect. In contrast, the modification mechanisms of Sb are different under varying cooling rates. At low cooling rates of ~ 50 to 76 °C/s, Sb modifies the morphology of primary Mg2Si to be truncated octahedrons by introducing Mg3Sb2 particles as heterogeneous nuclei and the substitution of Sb to Si in Mg2Si crystals. At high cooling rates of ~ 213 to 230 °C/s, primary Mg2Si grows coarser with a dendrite morphology due to solute trapping, which changes the modification mechanism to substitution alone. Moreover, it is interesting that at cooling rates of ~ 213 to 230 °C/s, primary and eutectic Mg2Si particles in the Al-20Mg2Si-0.15Sr alloy are refined simultaneously, which greatly suppresses the crack formation and propagation. Accordingly, the ultimate tensile strength and elongation to failure are increased to ~ 242 MPa and ~ 5.6 pct compared to the unmodified alloy (~ 188 MPa and ~ 1.4 pct, respectively). More... »

PAGES

1-11

References to SciGraph publications

  • 2016-05-03. Response of Mg Addition on the Dendritic Structures and Mechanical Properties of Hypoeutectic Al-10Si (Wt Pct) Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2012-09-19. Modification of Primary Mg2Si in Mg-4Si Alloys with Antimony in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2017-02-07. Growth Mechanism of Primary and Eutectic TiB2 Particles in a Hypereutectic Steel Matrix Composite in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2015-01-29. Effect of Cooling Rate on Phosphorus Removal During Al-Si Solvent Refining in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2015-05-20. The Contribution of Constitutional Supercooling to Nucleation and Grain Formation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2009-06-24. Modification of Cast Al-Mg2Si Metal Matrix Composite by Li in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2006-12. Study on electromagnetic force for preparation of in-situ Al/Mg2Si functionally graded materials by electromagnetic separation method in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2019-10-21. Effect of Cooling Rate on the Grain Refinement of Mg-Y-Zr Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2016-10-27. Grain Coarsening of Cast Magnesium Alloys at High Cooling Rate: A New Observation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-022-02506-5

    DOI

    http://dx.doi.org/10.1007/s11663-022-02506-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147056190


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Chao", 
            "id": "sg:person.013403020651.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403020651.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Ming-Chuang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
                "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Hai-Long", 
            "id": "sg:person.010614124757.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614124757.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
                "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Cheng", 
            "id": "sg:person.014364223567.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364223567.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Pin-Kui", 
            "id": "sg:person.016646354321.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646354321.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
                "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zha", 
            "givenName": "Min", 
            "id": "sg:person.0657231237.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657231237.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
                "International Center of Future Science, Jilin University, 130012, Changchun, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Hui-Yuan", 
            "id": "sg:person.015100125467.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100125467.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11663-016-0678-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019778553", 
              "https://doi.org/10.1007/s11663-016-0678-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-019-05497-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121970224", 
              "https://doi.org/10.1007/s11661-019-05497-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2960-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051648904", 
              "https://doi.org/10.1007/s11661-015-2960-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-016-3852-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053229125", 
              "https://doi.org/10.1007/s11661-016-3852-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-012-1317-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015883315", 
              "https://doi.org/10.1007/s11661-012-1317-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02735023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029317561", 
              "https://doi.org/10.1007/bf02735023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-017-4001-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698644", 
              "https://doi.org/10.1007/s11661-017-4001-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-015-0291-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029926030", 
              "https://doi.org/10.1007/s11663-015-0291-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-009-9251-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043182608", 
              "https://doi.org/10.1007/s11663-009-9251-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-12", 
        "datePublishedReg": "2022-04-12", 
        "description": "Unraveling the varied modification mechanisms of trace elements under diverse cooling rates is of great importance to regulate the morphology of primary Mg2Si in hypereutectic Al-Mg2Si alloys. In the present work, the modification mechanisms of Sr and Sb in Al-20Mg2Si alloys under different cooling rates are discussed in detail. Increasing the cooling rates from ~\u00a050 to 76\u00a0\u00b0C/s to ~\u00a0213 to 230\u00a0\u00b0C/s leads to the morphology transition of primary Mg2Si from hoppers to dendrites, which is attributed to a smaller constitutional zone with the increase of temperature gradients introduced by high cooling rates. The addition of 0.15\u00a0wt\u00a0pct Sr modifies the morphology of primary Mg2Si phase to cubes at cooling rates of ~\u00a050 to 76\u00a0\u00b0C/s and ~\u00a0213 to 230\u00a0\u00b0C/s with the same modification mechanism, i.e., by increasing nucleation driving force for primary Mg2Si and the adsorption-poisoning effect. In contrast, the modification mechanisms of Sb are different under varying cooling rates. At low cooling rates of ~\u00a050 to 76\u00a0\u00b0C/s, Sb modifies the morphology of primary Mg2Si to be truncated octahedrons by introducing Mg3Sb2 particles as heterogeneous nuclei and the substitution of Sb to Si in Mg2Si crystals. At high cooling rates of ~\u00a0213 to 230\u00a0\u00b0C/s, primary Mg2Si grows coarser with a dendrite morphology due to solute trapping, which changes the modification mechanism to substitution alone. Moreover, it is interesting that at cooling rates of ~\u00a0213 to 230\u00a0\u00b0C/s, primary and eutectic Mg2Si particles in the Al-20Mg2Si-0.15Sr alloy are refined simultaneously, which greatly suppresses the crack formation and propagation. Accordingly, the ultimate tensile strength and elongation to failure are increased to ~\u00a0242\u00a0MPa and ~\u00a05.6\u00a0pct compared to the unmodified alloy (~\u00a0188\u00a0MPa and ~\u00a01.4\u00a0pct, respectively).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-022-02506-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "primary Mg2Si", 
          "high cooling rate", 
          "Al-20Mg2Si alloy", 
          "cooling rate", 
          "modification mechanism", 
          "eutectic Mg2Si particles", 
          "primary Mg2Si phase", 
          "ultimate tensile strength", 
          "Al\u2013Mg2Si alloys", 
          "low cooling rate", 
          "different cooling rates", 
          "Al-20Mg2Si", 
          "unmodified alloy", 
          "Mg2Si particles", 
          "Mg2Si phase", 
          "crack formation", 
          "tensile strength", 
          "Mg2Si", 
          "alloy", 
          "Mg2Si crystals", 
          "solute trapping", 
          "temperature gradient", 
          "substitution of Sb", 
          "heterogeneous nuclei", 
          "dendrite morphology", 
          "present work", 
          "morphology transition", 
          "particles", 
          "morphology", 
          "Sb", 
          "MPa", 
          "Si", 
          "great importance", 
          "nucleation", 
          "hopper", 
          "strength", 
          "PCT", 
          "wt", 
          "propagation", 
          "force", 
          "elongation", 
          "cube", 
          "gradient", 
          "rate", 
          "Sr", 
          "phase", 
          "zone", 
          "trapping", 
          "mechanism", 
          "work", 
          "crystals", 
          "detail", 
          "elements", 
          "formation", 
          "failure", 
          "transition", 
          "increase", 
          "addition", 
          "effect", 
          "dendrites", 
          "substitution", 
          "trace elements", 
          "octahedra", 
          "importance", 
          "contrast", 
          "nucleus"
        ], 
        "name": "Varied Modification Mechanisms of Sr and Sb Under Diverse Cooling Rates on Primary Mg2Si in an Al-20Mg2Si Alloy", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147056190"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-022-02506-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-022-02506-5", 
          "https://app.dimensions.ai/details/publication/pub.1147056190"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_939.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-022-02506-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02506-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02506-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02506-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02506-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      22 PREDICATES      98 URIs      81 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-022-02506-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nbf06905bb8a846ff8f225de132047f7c
    4 schema:citation sg:pub.10.1007/bf02735023
    5 sg:pub.10.1007/s11661-012-1317-z
    6 sg:pub.10.1007/s11661-015-2960-y
    7 sg:pub.10.1007/s11661-016-3852-5
    8 sg:pub.10.1007/s11661-017-4001-5
    9 sg:pub.10.1007/s11661-019-05497-2
    10 sg:pub.10.1007/s11663-009-9251-1
    11 sg:pub.10.1007/s11663-015-0291-4
    12 sg:pub.10.1007/s11663-016-0678-x
    13 schema:datePublished 2022-04-12
    14 schema:datePublishedReg 2022-04-12
    15 schema:description Unraveling the varied modification mechanisms of trace elements under diverse cooling rates is of great importance to regulate the morphology of primary Mg2Si in hypereutectic Al-Mg2Si alloys. In the present work, the modification mechanisms of Sr and Sb in Al-20Mg2Si alloys under different cooling rates are discussed in detail. Increasing the cooling rates from ~ 50 to 76 °C/s to ~ 213 to 230 °C/s leads to the morphology transition of primary Mg2Si from hoppers to dendrites, which is attributed to a smaller constitutional zone with the increase of temperature gradients introduced by high cooling rates. The addition of 0.15 wt pct Sr modifies the morphology of primary Mg2Si phase to cubes at cooling rates of ~ 50 to 76 °C/s and ~ 213 to 230 °C/s with the same modification mechanism, i.e., by increasing nucleation driving force for primary Mg2Si and the adsorption-poisoning effect. In contrast, the modification mechanisms of Sb are different under varying cooling rates. At low cooling rates of ~ 50 to 76 °C/s, Sb modifies the morphology of primary Mg2Si to be truncated octahedrons by introducing Mg3Sb2 particles as heterogeneous nuclei and the substitution of Sb to Si in Mg2Si crystals. At high cooling rates of ~ 213 to 230 °C/s, primary Mg2Si grows coarser with a dendrite morphology due to solute trapping, which changes the modification mechanism to substitution alone. Moreover, it is interesting that at cooling rates of ~ 213 to 230 °C/s, primary and eutectic Mg2Si particles in the Al-20Mg2Si-0.15Sr alloy are refined simultaneously, which greatly suppresses the crack formation and propagation. Accordingly, the ultimate tensile strength and elongation to failure are increased to ~ 242 MPa and ~ 5.6 pct compared to the unmodified alloy (~ 188 MPa and ~ 1.4 pct, respectively).
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf sg:journal.1136775
    20 schema:keywords Al-20Mg2Si
    21 Al-20Mg2Si alloy
    22 Al–Mg2Si alloys
    23 MPa
    24 Mg2Si
    25 Mg2Si crystals
    26 Mg2Si particles
    27 Mg2Si phase
    28 PCT
    29 Sb
    30 Si
    31 Sr
    32 addition
    33 alloy
    34 contrast
    35 cooling rate
    36 crack formation
    37 crystals
    38 cube
    39 dendrite morphology
    40 dendrites
    41 detail
    42 different cooling rates
    43 effect
    44 elements
    45 elongation
    46 eutectic Mg2Si particles
    47 failure
    48 force
    49 formation
    50 gradient
    51 great importance
    52 heterogeneous nuclei
    53 high cooling rate
    54 hopper
    55 importance
    56 increase
    57 low cooling rate
    58 mechanism
    59 modification mechanism
    60 morphology
    61 morphology transition
    62 nucleation
    63 nucleus
    64 octahedra
    65 particles
    66 phase
    67 present work
    68 primary Mg2Si
    69 primary Mg2Si phase
    70 propagation
    71 rate
    72 solute trapping
    73 strength
    74 substitution
    75 substitution of Sb
    76 temperature gradient
    77 tensile strength
    78 trace elements
    79 transition
    80 trapping
    81 ultimate tensile strength
    82 unmodified alloy
    83 work
    84 wt
    85 zone
    86 schema:name Varied Modification Mechanisms of Sr and Sb Under Diverse Cooling Rates on Primary Mg2Si in an Al-20Mg2Si Alloy
    87 schema:pagination 1-11
    88 schema:productId N9e91638fb270498cabbae1d166d237a7
    89 Ndd71755469724503aae53efb98d8b43a
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147056190
    91 https://doi.org/10.1007/s11663-022-02506-5
    92 schema:sdDatePublished 2022-06-01T22:24
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N3dd5f14d2e8f41c7a324e8c81bd4dc36
    95 schema:url https://doi.org/10.1007/s11663-022-02506-5
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N2017617476c346fd892a29d8e1f7e786 rdf:first sg:person.010614124757.79
    100 rdf:rest N94c38778c15a43d5a1e32c8b769e8fe8
    101 N328107ccbd9746d5a5562f6a811489bf rdf:first Na49f3cdcb2cf435b9262a91fcb5ed3b3
    102 rdf:rest N2017617476c346fd892a29d8e1f7e786
    103 N3dd5f14d2e8f41c7a324e8c81bd4dc36 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 N72627ef0c7d84047935967166f2a8a8a rdf:first sg:person.0657231237.17
    106 rdf:rest Nc992c2cb530846d6ac5441a2324cec26
    107 N94c38778c15a43d5a1e32c8b769e8fe8 rdf:first sg:person.014364223567.07
    108 rdf:rest Naf501d8bc72048b5aaf72a177d78f14e
    109 N9e91638fb270498cabbae1d166d237a7 schema:name doi
    110 schema:value 10.1007/s11663-022-02506-5
    111 rdf:type schema:PropertyValue
    112 Na49f3cdcb2cf435b9262a91fcb5ed3b3 schema:affiliation grid-institutes:grid.64924.3d
    113 schema:familyName Zhao
    114 schema:givenName Ming-Chuang
    115 rdf:type schema:Person
    116 Naf501d8bc72048b5aaf72a177d78f14e rdf:first sg:person.016646354321.24
    117 rdf:rest N72627ef0c7d84047935967166f2a8a8a
    118 Nbf06905bb8a846ff8f225de132047f7c rdf:first sg:person.013403020651.06
    119 rdf:rest N328107ccbd9746d5a5562f6a811489bf
    120 Nc992c2cb530846d6ac5441a2324cec26 rdf:first sg:person.015100125467.25
    121 rdf:rest rdf:nil
    122 Ndd71755469724503aae53efb98d8b43a schema:name dimensions_id
    123 schema:value pub.1147056190
    124 rdf:type schema:PropertyValue
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Materials Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1136775 schema:issn 1073-5615
    132 1543-1916
    133 schema:name Metallurgical and Materials Transactions B
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.010614124757.79 schema:affiliation grid-institutes:grid.64924.3d
    137 schema:familyName Jia
    138 schema:givenName Hai-Long
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614124757.79
    140 rdf:type schema:Person
    141 sg:person.013403020651.06 schema:affiliation grid-institutes:grid.64924.3d
    142 schema:familyName Li
    143 schema:givenName Chao
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403020651.06
    145 rdf:type schema:Person
    146 sg:person.014364223567.07 schema:affiliation grid-institutes:grid.64924.3d
    147 schema:familyName Wang
    148 schema:givenName Cheng
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364223567.07
    150 rdf:type schema:Person
    151 sg:person.015100125467.25 schema:affiliation grid-institutes:grid.64924.3d
    152 schema:familyName Wang
    153 schema:givenName Hui-Yuan
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100125467.25
    155 rdf:type schema:Person
    156 sg:person.016646354321.24 schema:affiliation grid-institutes:grid.64924.3d
    157 schema:familyName Ma
    158 schema:givenName Pin-Kui
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646354321.24
    160 rdf:type schema:Person
    161 sg:person.0657231237.17 schema:affiliation grid-institutes:grid.64924.3d
    162 schema:familyName Zha
    163 schema:givenName Min
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657231237.17
    165 rdf:type schema:Person
    166 sg:pub.10.1007/bf02735023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029317561
    167 https://doi.org/10.1007/bf02735023
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s11661-012-1317-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015883315
    170 https://doi.org/10.1007/s11661-012-1317-z
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s11661-015-2960-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051648904
    173 https://doi.org/10.1007/s11661-015-2960-y
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s11661-016-3852-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053229125
    176 https://doi.org/10.1007/s11661-016-3852-5
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11661-017-4001-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698644
    179 https://doi.org/10.1007/s11661-017-4001-5
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s11661-019-05497-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121970224
    182 https://doi.org/10.1007/s11661-019-05497-2
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11663-009-9251-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043182608
    185 https://doi.org/10.1007/s11663-009-9251-1
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s11663-015-0291-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029926030
    188 https://doi.org/10.1007/s11663-015-0291-4
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s11663-016-0678-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019778553
    191 https://doi.org/10.1007/s11663-016-0678-x
    192 rdf:type schema:CreativeWork
    193 grid-institutes:grid.64924.3d schema:alternateName International Center of Future Science, Jilin University, 130012, Changchun, People’s Republic of China
    194 Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People’s Republic of China
    195 schema:name International Center of Future Science, Jilin University, 130012, Changchun, People’s Republic of China
    196 Key Laboratory of Automobile Materials of Ministry of Education &, School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, 130025, Changchun, People’s Republic of China
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...