Ontology type: schema:ScholarlyArticle
2022-04-12
AUTHORSRidong Zhao, Huagui Huang, Meng Yan, Huiyun Shen, Jiahui Yang
ABSTRACTThe solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134 °C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency. More... »
PAGES1-15
http://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8
DOIhttp://dx.doi.org/10.1007/s11663-022-02503-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147055752
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China",
"id": "http://www.grid.ac/institutes/grid.413012.5",
"name": [
"National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
],
"type": "Organization"
},
"familyName": "Zhao",
"givenName": "Ridong",
"id": "sg:person.07463355245.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463355245.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China",
"id": "http://www.grid.ac/institutes/grid.413012.5",
"name": [
"National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
],
"type": "Organization"
},
"familyName": "Huang",
"givenName": "Huagui",
"id": "sg:person.016602476275.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602476275.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China",
"id": "http://www.grid.ac/institutes/grid.413012.5",
"name": [
"National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China",
"Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
],
"type": "Organization"
},
"familyName": "Yan",
"givenName": "Meng",
"id": "sg:person.014010270303.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010270303.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China",
"id": "http://www.grid.ac/institutes/grid.413012.5",
"name": [
"National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
],
"type": "Organization"
},
"familyName": "Shen",
"givenName": "Huiyun",
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China",
"id": "http://www.grid.ac/institutes/grid.413012.5",
"name": [
"National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Jiahui",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11661-016-3842-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009836024",
"https://doi.org/10.1007/s11661-016-3842-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10010-014-0182-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036292179",
"https://doi.org/10.1007/s10010-014-0182-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-014-5831-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015977358",
"https://doi.org/10.1007/s00170-014-5831-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11663-015-0329-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046122857",
"https://doi.org/10.1007/s11663-015-0329-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11663-012-9659-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053132205",
"https://doi.org/10.1007/s11663-012-9659-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11663-015-0486-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048711703",
"https://doi.org/10.1007/s11663-015-0486-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-016-0028-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079403223",
"https://doi.org/10.1038/s41598-016-0028-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11663-020-01854-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1127603540",
"https://doi.org/10.1007/s11663-020-01854-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-12",
"datePublishedReg": "2022-04-12",
"description": "The solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134\u00a0\u00b0C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency.",
"genre": "article",
"id": "sg:pub.10.1007/s11663-022-02503-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.8938736",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136775",
"issn": [
"1073-5615",
"1543-1916"
],
"name": "Metallurgical and Materials Transactions B",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"sandwich composite plates",
"thermal resistance model",
"roll surface temperature",
"composite plates",
"sleeve material",
"temperature field",
"scanning electron microscope",
"cast rolls",
"kiss point",
"different casting speeds",
"twin-roll casting",
"roll casting process",
"resistance model",
"surface temperature",
"grain size increases",
"strip temperature",
"casting speed",
"molten pool",
"casting process",
"outlet temperature",
"heat transfer",
"roll gap",
"rolling stage",
"thermal resistance",
"solidification rate",
"service conditions",
"manufacturing efficiency",
"steel",
"numerical simulations",
"speed results",
"electron microscope",
"simulation results",
"SEM analysis",
"material changes",
"same height",
"speed",
"temperature",
"plate",
"materials",
"roll",
"copper",
"casting",
"size increases",
"field",
"mill",
"process",
"simulations",
"microscope",
"dividing point",
"sleeve",
"efficiency",
"melt",
"scenarios",
"model",
"height",
"increase",
"point",
"results",
"resistance",
"transfer",
"conditions",
"effect",
"stage",
"gap",
"twins",
"min",
"rate",
"analysis",
"trips",
"basis",
"changes",
"pool"
],
"name": "Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process",
"pagination": "1-15",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147055752"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11663-022-02503-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11663-022-02503-8",
"https://app.dimensions.ai/details/publication/pub.1147055752"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_924.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11663-022-02503-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'
This table displays all metadata directly associated to this object as RDF triples.
190 TRIPLES
22 PREDICATES
104 URIs
87 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11663-022-02503-8 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | ″ | anzsrc-for:0915 |
4 | ″ | schema:author | Ndc90f64ce2604b7bb52a3a2b00141ee2 |
5 | ″ | schema:citation | sg:pub.10.1007/s00170-014-5831-6 |
6 | ″ | ″ | sg:pub.10.1007/s10010-014-0182-x |
7 | ″ | ″ | sg:pub.10.1007/s11661-016-3842-7 |
8 | ″ | ″ | sg:pub.10.1007/s11663-012-9659-x |
9 | ″ | ″ | sg:pub.10.1007/s11663-015-0329-7 |
10 | ″ | ″ | sg:pub.10.1007/s11663-015-0486-8 |
11 | ″ | ″ | sg:pub.10.1007/s11663-020-01854-4 |
12 | ″ | ″ | sg:pub.10.1038/s41598-016-0028-x |
13 | ″ | schema:datePublished | 2022-04-12 |
14 | ″ | schema:datePublishedReg | 2022-04-12 |
15 | ″ | schema:description | The solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134 °C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency. |
16 | ″ | schema:genre | article |
17 | ″ | schema:inLanguage | en |
18 | ″ | schema:isAccessibleForFree | false |
19 | ″ | schema:isPartOf | sg:journal.1136775 |
20 | ″ | schema:keywords | SEM analysis |
21 | ″ | ″ | analysis |
22 | ″ | ″ | basis |
23 | ″ | ″ | cast rolls |
24 | ″ | ″ | casting |
25 | ″ | ″ | casting process |
26 | ″ | ″ | casting speed |
27 | ″ | ″ | changes |
28 | ″ | ″ | composite plates |
29 | ″ | ″ | conditions |
30 | ″ | ″ | copper |
31 | ″ | ″ | different casting speeds |
32 | ″ | ″ | dividing point |
33 | ″ | ″ | effect |
34 | ″ | ″ | efficiency |
35 | ″ | ″ | electron microscope |
36 | ″ | ″ | field |
37 | ″ | ″ | gap |
38 | ″ | ″ | grain size increases |
39 | ″ | ″ | heat transfer |
40 | ″ | ″ | height |
41 | ″ | ″ | increase |
42 | ″ | ″ | kiss point |
43 | ″ | ″ | manufacturing efficiency |
44 | ″ | ″ | material changes |
45 | ″ | ″ | materials |
46 | ″ | ″ | melt |
47 | ″ | ″ | microscope |
48 | ″ | ″ | mill |
49 | ″ | ″ | min |
50 | ″ | ″ | model |
51 | ″ | ″ | molten pool |
52 | ″ | ″ | numerical simulations |
53 | ″ | ″ | outlet temperature |
54 | ″ | ″ | plate |
55 | ″ | ″ | point |
56 | ″ | ″ | pool |
57 | ″ | ″ | process |
58 | ″ | ″ | rate |
59 | ″ | ″ | resistance |
60 | ″ | ″ | resistance model |
61 | ″ | ″ | results |
62 | ″ | ″ | roll |
63 | ″ | ″ | roll casting process |
64 | ″ | ″ | roll gap |
65 | ″ | ″ | roll surface temperature |
66 | ″ | ″ | rolling stage |
67 | ″ | ″ | same height |
68 | ″ | ″ | sandwich composite plates |
69 | ″ | ″ | scanning electron microscope |
70 | ″ | ″ | scenarios |
71 | ″ | ″ | service conditions |
72 | ″ | ″ | simulation results |
73 | ″ | ″ | simulations |
74 | ″ | ″ | size increases |
75 | ″ | ″ | sleeve |
76 | ″ | ″ | sleeve material |
77 | ″ | ″ | solidification rate |
78 | ″ | ″ | speed |
79 | ″ | ″ | speed results |
80 | ″ | ″ | stage |
81 | ″ | ″ | steel |
82 | ″ | ″ | strip temperature |
83 | ″ | ″ | surface temperature |
84 | ″ | ″ | temperature |
85 | ″ | ″ | temperature field |
86 | ″ | ″ | thermal resistance |
87 | ″ | ″ | thermal resistance model |
88 | ″ | ″ | transfer |
89 | ″ | ″ | trips |
90 | ″ | ″ | twin-roll casting |
91 | ″ | ″ | twins |
92 | ″ | schema:name | Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process |
93 | ″ | schema:pagination | 1-15 |
94 | ″ | schema:productId | N63fd6e3aeff8440f889d8244c450782c |
95 | ″ | ″ | N99e653127017444ba99306d108dc5869 |
96 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1147055752 |
97 | ″ | ″ | https://doi.org/10.1007/s11663-022-02503-8 |
98 | ″ | schema:sdDatePublished | 2022-06-01T22:25 |
99 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
100 | ″ | schema:sdPublisher | N8e0af8e5fc3144eb85f708631d85b1dd |
101 | ″ | schema:url | https://doi.org/10.1007/s11663-022-02503-8 |
102 | ″ | sgo:license | sg:explorer/license/ |
103 | ″ | sgo:sdDataset | articles |
104 | ″ | rdf:type | schema:ScholarlyArticle |
105 | N0846a9ab394b44b89df961893f9bc731 | schema:affiliation | grid-institutes:grid.413012.5 |
106 | ″ | schema:familyName | Shen |
107 | ″ | schema:givenName | Huiyun |
108 | ″ | rdf:type | schema:Person |
109 | N159fa4cef20744529fe6ae9ae5edff5a | rdf:first | sg:person.014010270303.09 |
110 | ″ | rdf:rest | Nd4faf5c2606f412ea58315d8aa9d7628 |
111 | N3b3cab6bb8de4ebfbf8b26be5d3d1701 | schema:affiliation | grid-institutes:grid.413012.5 |
112 | ″ | schema:familyName | Yang |
113 | ″ | schema:givenName | Jiahui |
114 | ″ | rdf:type | schema:Person |
115 | N63fd6e3aeff8440f889d8244c450782c | schema:name | dimensions_id |
116 | ″ | schema:value | pub.1147055752 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | N8e0af8e5fc3144eb85f708631d85b1dd | schema:name | Springer Nature - SN SciGraph project |
119 | ″ | rdf:type | schema:Organization |
120 | N99e653127017444ba99306d108dc5869 | schema:name | doi |
121 | ″ | schema:value | 10.1007/s11663-022-02503-8 |
122 | ″ | rdf:type | schema:PropertyValue |
123 | Nb43154feab26487dacb8a7a92f9b3578 | rdf:first | N3b3cab6bb8de4ebfbf8b26be5d3d1701 |
124 | ″ | rdf:rest | rdf:nil |
125 | Nd4faf5c2606f412ea58315d8aa9d7628 | rdf:first | N0846a9ab394b44b89df961893f9bc731 |
126 | ″ | rdf:rest | Nb43154feab26487dacb8a7a92f9b3578 |
127 | Ndc90f64ce2604b7bb52a3a2b00141ee2 | rdf:first | sg:person.07463355245.04 |
128 | ″ | rdf:rest | Nffb0ce35032b489ab19fdf0a39687513 |
129 | Nffb0ce35032b489ab19fdf0a39687513 | rdf:first | sg:person.016602476275.43 |
130 | ″ | rdf:rest | N159fa4cef20744529fe6ae9ae5edff5a |
131 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Engineering |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Materials Engineering |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
138 | ″ | schema:name | Interdisciplinary Engineering |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | sg:grant.8938736 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11663-022-02503-8 |
141 | ″ | rdf:type | schema:MonetaryGrant |
142 | sg:journal.1136775 | schema:issn | 1073-5615 |
143 | ″ | ″ | 1543-1916 |
144 | ″ | schema:name | Metallurgical and Materials Transactions B |
145 | ″ | schema:publisher | Springer Nature |
146 | ″ | rdf:type | schema:Periodical |
147 | sg:person.014010270303.09 | schema:affiliation | grid-institutes:grid.413012.5 |
148 | ″ | schema:familyName | Yan |
149 | ″ | schema:givenName | Meng |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010270303.09 |
151 | ″ | rdf:type | schema:Person |
152 | sg:person.016602476275.43 | schema:affiliation | grid-institutes:grid.413012.5 |
153 | ″ | schema:familyName | Huang |
154 | ″ | schema:givenName | Huagui |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602476275.43 |
156 | ″ | rdf:type | schema:Person |
157 | sg:person.07463355245.04 | schema:affiliation | grid-institutes:grid.413012.5 |
158 | ″ | schema:familyName | Zhao |
159 | ″ | schema:givenName | Ridong |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463355245.04 |
161 | ″ | rdf:type | schema:Person |
162 | sg:pub.10.1007/s00170-014-5831-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015977358 |
163 | ″ | ″ | https://doi.org/10.1007/s00170-014-5831-6 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | sg:pub.10.1007/s10010-014-0182-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036292179 |
166 | ″ | ″ | https://doi.org/10.1007/s10010-014-0182-x |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1007/s11661-016-3842-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009836024 |
169 | ″ | ″ | https://doi.org/10.1007/s11661-016-3842-7 |
170 | ″ | rdf:type | schema:CreativeWork |
171 | sg:pub.10.1007/s11663-012-9659-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053132205 |
172 | ″ | ″ | https://doi.org/10.1007/s11663-012-9659-x |
173 | ″ | rdf:type | schema:CreativeWork |
174 | sg:pub.10.1007/s11663-015-0329-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046122857 |
175 | ″ | ″ | https://doi.org/10.1007/s11663-015-0329-7 |
176 | ″ | rdf:type | schema:CreativeWork |
177 | sg:pub.10.1007/s11663-015-0486-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048711703 |
178 | ″ | ″ | https://doi.org/10.1007/s11663-015-0486-8 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | sg:pub.10.1007/s11663-020-01854-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1127603540 |
181 | ″ | ″ | https://doi.org/10.1007/s11663-020-01854-4 |
182 | ″ | rdf:type | schema:CreativeWork |
183 | sg:pub.10.1038/s41598-016-0028-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1079403223 |
184 | ″ | ″ | https://doi.org/10.1038/s41598-016-0028-x |
185 | ″ | rdf:type | schema:CreativeWork |
186 | grid-institutes:grid.413012.5 | schema:alternateName | Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China |
187 | ″ | ″ | National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China |
188 | ″ | schema:name | Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China |
189 | ″ | ″ | National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China |
190 | ″ | rdf:type | schema:Organization |