Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-12

AUTHORS

Ridong Zhao, Huagui Huang, Meng Yan, Huiyun Shen, Jiahui Yang

ABSTRACT

The solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134 °C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8

DOI

http://dx.doi.org/10.1007/s11663-022-02503-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147055752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Ridong", 
        "id": "sg:person.07463355245.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463355245.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Huagui", 
        "id": "sg:person.016602476275.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602476275.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China", 
            "Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Meng", 
        "id": "sg:person.014010270303.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010270303.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Huiyun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jiahui", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-016-3842-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009836024", 
          "https://doi.org/10.1007/s11661-016-3842-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10010-014-0182-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036292179", 
          "https://doi.org/10.1007/s10010-014-0182-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-5831-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015977358", 
          "https://doi.org/10.1007/s00170-014-5831-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-015-0329-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046122857", 
          "https://doi.org/10.1007/s11663-015-0329-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-012-9659-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053132205", 
          "https://doi.org/10.1007/s11663-012-9659-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-015-0486-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048711703", 
          "https://doi.org/10.1007/s11663-015-0486-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-016-0028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079403223", 
          "https://doi.org/10.1038/s41598-016-0028-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-020-01854-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127603540", 
          "https://doi.org/10.1007/s11663-020-01854-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-12", 
    "datePublishedReg": "2022-04-12", 
    "description": "The solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134\u00a0\u00b0C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11663-022-02503-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8938736", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136775", 
        "issn": [
          "1073-5615", 
          "1543-1916"
        ], 
        "name": "Metallurgical and Materials Transactions B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "sandwich composite plates", 
      "thermal resistance model", 
      "roll surface temperature", 
      "composite plates", 
      "sleeve material", 
      "temperature field", 
      "scanning electron microscope", 
      "cast rolls", 
      "kiss point", 
      "different casting speeds", 
      "twin-roll casting", 
      "roll casting process", 
      "resistance model", 
      "surface temperature", 
      "grain size increases", 
      "strip temperature", 
      "casting speed", 
      "molten pool", 
      "casting process", 
      "outlet temperature", 
      "heat transfer", 
      "roll gap", 
      "rolling stage", 
      "thermal resistance", 
      "solidification rate", 
      "service conditions", 
      "manufacturing efficiency", 
      "steel", 
      "numerical simulations", 
      "speed results", 
      "electron microscope", 
      "simulation results", 
      "SEM analysis", 
      "material changes", 
      "same height", 
      "speed", 
      "temperature", 
      "plate", 
      "materials", 
      "roll", 
      "copper", 
      "casting", 
      "size increases", 
      "field", 
      "mill", 
      "process", 
      "simulations", 
      "microscope", 
      "dividing point", 
      "sleeve", 
      "efficiency", 
      "melt", 
      "scenarios", 
      "model", 
      "height", 
      "increase", 
      "point", 
      "results", 
      "resistance", 
      "transfer", 
      "conditions", 
      "effect", 
      "stage", 
      "gap", 
      "twins", 
      "min", 
      "rate", 
      "analysis", 
      "trips", 
      "basis", 
      "changes", 
      "pool"
    ], 
    "name": "Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147055752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11663-022-02503-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11663-022-02503-8", 
      "https://app.dimensions.ai/details/publication/pub.1147055752"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_924.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11663-022-02503-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-022-02503-8'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      22 PREDICATES      104 URIs      87 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11663-022-02503-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 anzsrc-for:0915
4 schema:author Ndc90f64ce2604b7bb52a3a2b00141ee2
5 schema:citation sg:pub.10.1007/s00170-014-5831-6
6 sg:pub.10.1007/s10010-014-0182-x
7 sg:pub.10.1007/s11661-016-3842-7
8 sg:pub.10.1007/s11663-012-9659-x
9 sg:pub.10.1007/s11663-015-0329-7
10 sg:pub.10.1007/s11663-015-0486-8
11 sg:pub.10.1007/s11663-020-01854-4
12 sg:pub.10.1038/s41598-016-0028-x
13 schema:datePublished 2022-04-12
14 schema:datePublishedReg 2022-04-12
15 schema:description The solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134 °C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf sg:journal.1136775
20 schema:keywords SEM analysis
21 analysis
22 basis
23 cast rolls
24 casting
25 casting process
26 casting speed
27 changes
28 composite plates
29 conditions
30 copper
31 different casting speeds
32 dividing point
33 effect
34 efficiency
35 electron microscope
36 field
37 gap
38 grain size increases
39 heat transfer
40 height
41 increase
42 kiss point
43 manufacturing efficiency
44 material changes
45 materials
46 melt
47 microscope
48 mill
49 min
50 model
51 molten pool
52 numerical simulations
53 outlet temperature
54 plate
55 point
56 pool
57 process
58 rate
59 resistance
60 resistance model
61 results
62 roll
63 roll casting process
64 roll gap
65 roll surface temperature
66 rolling stage
67 same height
68 sandwich composite plates
69 scanning electron microscope
70 scenarios
71 service conditions
72 simulation results
73 simulations
74 size increases
75 sleeve
76 sleeve material
77 solidification rate
78 speed
79 speed results
80 stage
81 steel
82 strip temperature
83 surface temperature
84 temperature
85 temperature field
86 thermal resistance
87 thermal resistance model
88 transfer
89 trips
90 twin-roll casting
91 twins
92 schema:name Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process
93 schema:pagination 1-15
94 schema:productId N63fd6e3aeff8440f889d8244c450782c
95 N99e653127017444ba99306d108dc5869
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147055752
97 https://doi.org/10.1007/s11663-022-02503-8
98 schema:sdDatePublished 2022-06-01T22:25
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N8e0af8e5fc3144eb85f708631d85b1dd
101 schema:url https://doi.org/10.1007/s11663-022-02503-8
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N0846a9ab394b44b89df961893f9bc731 schema:affiliation grid-institutes:grid.413012.5
106 schema:familyName Shen
107 schema:givenName Huiyun
108 rdf:type schema:Person
109 N159fa4cef20744529fe6ae9ae5edff5a rdf:first sg:person.014010270303.09
110 rdf:rest Nd4faf5c2606f412ea58315d8aa9d7628
111 N3b3cab6bb8de4ebfbf8b26be5d3d1701 schema:affiliation grid-institutes:grid.413012.5
112 schema:familyName Yang
113 schema:givenName Jiahui
114 rdf:type schema:Person
115 N63fd6e3aeff8440f889d8244c450782c schema:name dimensions_id
116 schema:value pub.1147055752
117 rdf:type schema:PropertyValue
118 N8e0af8e5fc3144eb85f708631d85b1dd schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N99e653127017444ba99306d108dc5869 schema:name doi
121 schema:value 10.1007/s11663-022-02503-8
122 rdf:type schema:PropertyValue
123 Nb43154feab26487dacb8a7a92f9b3578 rdf:first N3b3cab6bb8de4ebfbf8b26be5d3d1701
124 rdf:rest rdf:nil
125 Nd4faf5c2606f412ea58315d8aa9d7628 rdf:first N0846a9ab394b44b89df961893f9bc731
126 rdf:rest Nb43154feab26487dacb8a7a92f9b3578
127 Ndc90f64ce2604b7bb52a3a2b00141ee2 rdf:first sg:person.07463355245.04
128 rdf:rest Nffb0ce35032b489ab19fdf0a39687513
129 Nffb0ce35032b489ab19fdf0a39687513 rdf:first sg:person.016602476275.43
130 rdf:rest N159fa4cef20744529fe6ae9ae5edff5a
131 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
132 schema:name Engineering
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
135 schema:name Materials Engineering
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
138 schema:name Interdisciplinary Engineering
139 rdf:type schema:DefinedTerm
140 sg:grant.8938736 http://pending.schema.org/fundedItem sg:pub.10.1007/s11663-022-02503-8
141 rdf:type schema:MonetaryGrant
142 sg:journal.1136775 schema:issn 1073-5615
143 1543-1916
144 schema:name Metallurgical and Materials Transactions B
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.014010270303.09 schema:affiliation grid-institutes:grid.413012.5
148 schema:familyName Yan
149 schema:givenName Meng
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010270303.09
151 rdf:type schema:Person
152 sg:person.016602476275.43 schema:affiliation grid-institutes:grid.413012.5
153 schema:familyName Huang
154 schema:givenName Huagui
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602476275.43
156 rdf:type schema:Person
157 sg:person.07463355245.04 schema:affiliation grid-institutes:grid.413012.5
158 schema:familyName Zhao
159 schema:givenName Ridong
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463355245.04
161 rdf:type schema:Person
162 sg:pub.10.1007/s00170-014-5831-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015977358
163 https://doi.org/10.1007/s00170-014-5831-6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10010-014-0182-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036292179
166 https://doi.org/10.1007/s10010-014-0182-x
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11661-016-3842-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009836024
169 https://doi.org/10.1007/s11661-016-3842-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11663-012-9659-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132205
172 https://doi.org/10.1007/s11663-012-9659-x
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11663-015-0329-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046122857
175 https://doi.org/10.1007/s11663-015-0329-7
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11663-015-0486-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048711703
178 https://doi.org/10.1007/s11663-015-0486-8
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11663-020-01854-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127603540
181 https://doi.org/10.1007/s11663-020-01854-4
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/s41598-016-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403223
184 https://doi.org/10.1038/s41598-016-0028-x
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.413012.5 schema:alternateName Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China
187 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China
188 schema:name Hebei Light Structural Equipment Design and Manufacturing Technology Innovation Center, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China
189 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 066004, Qinhuangdao, Hebei, P.R. China
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...