Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Adrian S. Sabau, Seyed Mirmiran, Christopher Glaspie, Shimin Li, Diran Apelian, Amit Shyam, J. Allen Haynes, Andres F. Rodriguez

ABSTRACT

The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct. More... »

PAGES

1267-1287

References to SciGraph publications

  • 2006-12. Hot tearing of ternary Mg−Al−Ca alloy castings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2008-06. A New Tensile Test for Aluminum Alloys in the Mushy State: Experimental Method and Numerical Modeling in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1999-02. A new hot-tearing criterion in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2007-02. Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration in JOURNAL OF PHASE EQUILIBRIA
  • 2016-10. Effects of Mold Temperature and Pouring Temperature on the Hot Tearing of Cast Al-Cu Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2017. Hot-Tearing of Multicomponent Al-Cu Alloys Based on Casting Load Measurements in a Constrained Permanent Mold in TMS 2017 146TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS
  • 2000-05. Two-phase modeling of mushy zone parameters associated with hot tearing in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-07. Solidification thermal parameters affecting the columnar-to-equiaxed transition in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2003-06. Solidification and liquation cracking issues in welding in JOM
  • 2012-09. Observation and Prediction of the Hot Tear Susceptibility of Ternary Al-Si-Mg Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-018-1204-0

    DOI

    http://dx.doi.org/10.1007/s11663-018-1204-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101079775


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sabau", 
            "givenName": "Adrian S.", 
            "id": "sg:person.011245022566.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245022566.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fiat Chrysler Automobiles (United States)", 
              "id": "https://www.grid.ac/institutes/grid.467311.6", 
              "name": [
                "Fiat Chrysler Automobiles North America, LLC, 48326, Auburn Hills, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mirmiran", 
            "givenName": "Seyed", 
            "id": "sg:person.010511664213.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511664213.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fiat Chrysler Automobiles (United States)", 
              "id": "https://www.grid.ac/institutes/grid.467311.6", 
              "name": [
                "Fiat Chrysler Automobiles North America, LLC, 48326, Auburn Hills, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glaspie", 
            "givenName": "Christopher", 
            "id": "sg:person.012702205613.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702205613.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Worcester Polytechnic Institute", 
              "id": "https://www.grid.ac/institutes/grid.268323.e", 
              "name": [
                "Worcester Polytechnic Institute, 01609, Worcester, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Shimin", 
            "id": "sg:person.011514146425.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514146425.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Worcester Polytechnic Institute", 
              "id": "https://www.grid.ac/institutes/grid.268323.e", 
              "name": [
                "Worcester Polytechnic Institute, 01609, Worcester, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Apelian", 
            "givenName": "Diran", 
            "id": "sg:person.014007561701.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007561701.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shyam", 
            "givenName": "Amit", 
            "id": "sg:person.012300500243.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300500243.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allen Haynes", 
            "givenName": "J.", 
            "id": "sg:person.012036502736.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036502736.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nemak Monterrey, 66000, Garcia, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodriguez", 
            "givenName": "Andres F.", 
            "id": "sg:person.015140642413.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140642413.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0025-5416(84)90201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007275551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5416(84)90201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007275551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-012-1132-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012583172", 
              "https://doi.org/10.1007/s11661-012-1132-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-0042-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015635688", 
              "https://doi.org/10.1007/s11661-002-0042-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-0042-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015635688", 
              "https://doi.org/10.1007/s11661-002-0042-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0749-6419(99)00017-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020927404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2004.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021419619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/136404606225023291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025717203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0334-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026049786", 
              "https://doi.org/10.1007/s11661-999-0334-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(09)60338-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030377647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/isijinternational.41.436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030623779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-003-0137-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032590841", 
              "https://doi.org/10.1007/s11837-003-0137-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-006-1059-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034288710", 
              "https://doi.org/10.1007/s11661-006-1059-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-016-0739-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034310834", 
              "https://doi.org/10.1007/s11663-016-0739-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-016-0739-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034310834", 
              "https://doi.org/10.1007/s11663-016-0739-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11669-006-9005-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038372928", 
              "https://doi.org/10.1007/s11669-006-9005-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11669-006-9005-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038372928", 
              "https://doi.org/10.1007/s11669-006-9005-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6425(03)00037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038891118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6425(03)00037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038891118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09534962.1990.11819043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040524491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-000-0264-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041605458", 
              "https://doi.org/10.1007/s11661-000-0264-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-000-0264-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041605458", 
              "https://doi.org/10.1007/s11661-000-0264-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-008-9529-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048116742", 
              "https://doi.org/10.1007/s11661-008-9529-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2015.01.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048268160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1743133610y.0000000004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048671575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/030716983803291226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052195305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2010.08.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053374312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-51493-2_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083904178", 
              "https://doi.org/10.1007/978-3-319-51493-2_44"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: \u201cV\u201d-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11663-018-1204-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold", 
        "pagination": "1267-1287", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1ee383edab8b087d2faf617fd376473cf0786b0e3767dd2abbfe91f896ca727e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-018-1204-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101079775"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-018-1204-0", 
          "https://app.dimensions.ai/details/publication/pub.1101079775"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s11663-018-1204-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-018-1204-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-018-1204-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-018-1204-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-018-1204-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-018-1204-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N005e0b409334442ca5d477943f755a1b
    4 schema:citation sg:pub.10.1007/978-3-319-51493-2_44
    5 sg:pub.10.1007/s11661-000-0264-2
    6 sg:pub.10.1007/s11661-002-0042-4
    7 sg:pub.10.1007/s11661-006-1059-x
    8 sg:pub.10.1007/s11661-008-9529-y
    9 sg:pub.10.1007/s11661-012-1132-6
    10 sg:pub.10.1007/s11661-999-0334-z
    11 sg:pub.10.1007/s11663-016-0739-1
    12 sg:pub.10.1007/s11669-006-9005-6
    13 sg:pub.10.1007/s11837-003-0137-4
    14 https://doi.org/10.1016/0025-5416(84)90201-5
    15 https://doi.org/10.1016/j.actamat.2004.10.019
    16 https://doi.org/10.1016/j.actamat.2015.01.034
    17 https://doi.org/10.1016/j.msea.2010.08.025
    18 https://doi.org/10.1016/s0079-6425(03)00037-9
    19 https://doi.org/10.1016/s0749-6419(99)00017-0
    20 https://doi.org/10.1016/s1003-6326(09)60338-1
    21 https://doi.org/10.1080/09534962.1990.11819043
    22 https://doi.org/10.1179/030716983803291226
    23 https://doi.org/10.1179/136404606225023291
    24 https://doi.org/10.1179/1743133610y.0000000004
    25 https://doi.org/10.2355/isijinternational.41.436
    26 schema:datePublished 2018-06
    27 schema:datePublishedReg 2018-06-01
    28 schema:description The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf Ne8b866752ae1487eb4d461da1c8e78d0
    33 Nf0daa312a6e54a29a6117863a49b415f
    34 sg:journal.1136775
    35 schema:name Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold
    36 schema:pagination 1267-1287
    37 schema:productId N2b1a54af98cb4012939370300bf62f3e
    38 N33085826907d472daeaf9ba60af34c31
    39 N3e3a393c6f7b4bf7bbb976e73d1cb303
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101079775
    41 https://doi.org/10.1007/s11663-018-1204-0
    42 schema:sdDatePublished 2019-04-10T19:02
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Ndb80df3614eb4b28a7b989e57b65b27c
    45 schema:url http://link.springer.com/10.1007/s11663-018-1204-0
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N005e0b409334442ca5d477943f755a1b rdf:first sg:person.011245022566.00
    50 rdf:rest N128c163fbdb04a41b8b83890df32103a
    51 N128c163fbdb04a41b8b83890df32103a rdf:first sg:person.010511664213.33
    52 rdf:rest N47ba25c4f5a945daa71954ce33735280
    53 N21f3aa09155e407ea8e02bb5653c81a6 rdf:first sg:person.012036502736.86
    54 rdf:rest Ncefd152c145e4c1fa2825479c216aec7
    55 N2b1a54af98cb4012939370300bf62f3e schema:name doi
    56 schema:value 10.1007/s11663-018-1204-0
    57 rdf:type schema:PropertyValue
    58 N33085826907d472daeaf9ba60af34c31 schema:name dimensions_id
    59 schema:value pub.1101079775
    60 rdf:type schema:PropertyValue
    61 N3614d74849184e1d8e6f6ef40741a452 schema:name Nemak Monterrey, 66000, Garcia, Mexico
    62 rdf:type schema:Organization
    63 N3e3a393c6f7b4bf7bbb976e73d1cb303 schema:name readcube_id
    64 schema:value 1ee383edab8b087d2faf617fd376473cf0786b0e3767dd2abbfe91f896ca727e
    65 rdf:type schema:PropertyValue
    66 N47ba25c4f5a945daa71954ce33735280 rdf:first sg:person.012702205613.35
    67 rdf:rest N89d9283225b0475f8967c560505c2f9a
    68 N7559b6dc7c6a4eb6a3f7984fa8933dc5 rdf:first sg:person.014007561701.24
    69 rdf:rest Nebb47b1f1dcc41a4b1d59d5d5906f2ee
    70 N89d9283225b0475f8967c560505c2f9a rdf:first sg:person.011514146425.83
    71 rdf:rest N7559b6dc7c6a4eb6a3f7984fa8933dc5
    72 Ncefd152c145e4c1fa2825479c216aec7 rdf:first sg:person.015140642413.33
    73 rdf:rest rdf:nil
    74 Ndb80df3614eb4b28a7b989e57b65b27c schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 Ne8b866752ae1487eb4d461da1c8e78d0 schema:volumeNumber 49
    77 rdf:type schema:PublicationVolume
    78 Nebb47b1f1dcc41a4b1d59d5d5906f2ee rdf:first sg:person.012300500243.80
    79 rdf:rest N21f3aa09155e407ea8e02bb5653c81a6
    80 Nf0daa312a6e54a29a6117863a49b415f schema:issueNumber 3
    81 rdf:type schema:PublicationIssue
    82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Engineering
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Materials Engineering
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1136775 schema:issn 1073-5615
    89 1543-1916
    90 schema:name Metallurgical and Materials Transactions B
    91 rdf:type schema:Periodical
    92 sg:person.010511664213.33 schema:affiliation https://www.grid.ac/institutes/grid.467311.6
    93 schema:familyName Mirmiran
    94 schema:givenName Seyed
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511664213.33
    96 rdf:type schema:Person
    97 sg:person.011245022566.00 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    98 schema:familyName Sabau
    99 schema:givenName Adrian S.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245022566.00
    101 rdf:type schema:Person
    102 sg:person.011514146425.83 schema:affiliation https://www.grid.ac/institutes/grid.268323.e
    103 schema:familyName Li
    104 schema:givenName Shimin
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514146425.83
    106 rdf:type schema:Person
    107 sg:person.012036502736.86 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    108 schema:familyName Allen Haynes
    109 schema:givenName J.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036502736.86
    111 rdf:type schema:Person
    112 sg:person.012300500243.80 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    113 schema:familyName Shyam
    114 schema:givenName Amit
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300500243.80
    116 rdf:type schema:Person
    117 sg:person.012702205613.35 schema:affiliation https://www.grid.ac/institutes/grid.467311.6
    118 schema:familyName Glaspie
    119 schema:givenName Christopher
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702205613.35
    121 rdf:type schema:Person
    122 sg:person.014007561701.24 schema:affiliation https://www.grid.ac/institutes/grid.268323.e
    123 schema:familyName Apelian
    124 schema:givenName Diran
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007561701.24
    126 rdf:type schema:Person
    127 sg:person.015140642413.33 schema:affiliation N3614d74849184e1d8e6f6ef40741a452
    128 schema:familyName Rodriguez
    129 schema:givenName Andres F.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140642413.33
    131 rdf:type schema:Person
    132 sg:pub.10.1007/978-3-319-51493-2_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083904178
    133 https://doi.org/10.1007/978-3-319-51493-2_44
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s11661-000-0264-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041605458
    136 https://doi.org/10.1007/s11661-000-0264-2
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11661-002-0042-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015635688
    139 https://doi.org/10.1007/s11661-002-0042-4
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s11661-006-1059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034288710
    142 https://doi.org/10.1007/s11661-006-1059-x
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s11661-008-9529-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048116742
    145 https://doi.org/10.1007/s11661-008-9529-y
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s11661-012-1132-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012583172
    148 https://doi.org/10.1007/s11661-012-1132-6
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s11661-999-0334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049786
    151 https://doi.org/10.1007/s11661-999-0334-z
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11663-016-0739-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034310834
    154 https://doi.org/10.1007/s11663-016-0739-1
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11669-006-9005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038372928
    157 https://doi.org/10.1007/s11669-006-9005-6
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11837-003-0137-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032590841
    160 https://doi.org/10.1007/s11837-003-0137-4
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/0025-5416(84)90201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275551
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.actamat.2004.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021419619
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.actamat.2015.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048268160
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.msea.2010.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053374312
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0079-6425(03)00037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038891118
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0749-6419(99)00017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020927404
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/s1003-6326(09)60338-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030377647
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1080/09534962.1990.11819043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040524491
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1179/030716983803291226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052195305
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1179/136404606225023291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025717203
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1179/1743133610y.0000000004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048671575
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.2355/isijinternational.41.436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030623779
    185 rdf:type schema:CreativeWork
    186 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
    187 schema:name Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    188 rdf:type schema:Organization
    189 https://www.grid.ac/institutes/grid.268323.e schema:alternateName Worcester Polytechnic Institute
    190 schema:name Worcester Polytechnic Institute, 01609, Worcester, MA, USA
    191 rdf:type schema:Organization
    192 https://www.grid.ac/institutes/grid.467311.6 schema:alternateName Fiat Chrysler Automobiles (United States)
    193 schema:name Fiat Chrysler Automobiles North America, LLC, 48326, Auburn Hills, MI, USA
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...