Grain Refinement and Improvement of Solidification Defects in Direct-Chill Cast Billets of A4032 Alloy by Melt Conditioning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-26

AUTHORS

Hu-Tian Li, Pizhi Zhao, Rongdong Yang, Jayesh B. Patel, Xiangfu Chen, Zhongyun Fan

ABSTRACT

Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary α-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid–solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1 K/s (°C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid–solid phase region estimated by the Kozeny–Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet. More... »

PAGES

2481-2492

References to SciGraph publications

  • 1970-08. On the nature of freckles in nickel base superalloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1997-06. Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1970-08. The origin of freckles in unidirectionally solidified castings in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1984-12. The mechanisms of formation and prevention of channel segregation during alloy solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1999-02. A new hot-tearing criterion in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1982-12. A numerical simulation of the D.C. continuous casting process including nucleate boiling heat transfer in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1970-05. Interdendritic fluid flow and macrosegregation; influence of gravity in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2005-01. The use of water cooling during the continuous casting of steel and aluminum alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-07. Study on formation of channel-type segregation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1981-09. Effect of fluid flow on macrosegregation in axi-symmetric ingots in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2012-10-10. Oxidation of Aluminium Alloy Melts and Inoculation by Oxide Particles in TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS
  • 2012-04-04. Mechanism of grain refinement of an Al–Zn–Mg–Cu alloy prepared by low-frequency electromagnetic casting in JOURNAL OF MATERIALS SCIENCE
  • 1988-07. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4CI-H2O in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2015-05-19. On Macrosegregation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1970-06. Convective Fluid Motion Within the Interdendritic Liquid of a Casting in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-017-1016-7

    DOI

    http://dx.doi.org/10.1007/s11663-017-1016-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086305151


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK", 
              "id": "http://www.grid.ac/institutes/grid.7728.a", 
              "name": [
                "BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Hu-Tian", 
            "id": "sg:person.013446676411.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446676411.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chinalco Materials Application Research Institute Co., Ltd., 100082, Beijing, P.R. China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Chinalco Materials Application Research Institute Co., Ltd., 100082, Beijing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Pizhi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southwest Aluminum (Group) Co., CHINALCO, 401326, Chongqing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.469518.7", 
              "name": [
                "Southwest Aluminum (Group) Co., CHINALCO, 401326, Chongqing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Rongdong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK", 
              "id": "http://www.grid.ac/institutes/grid.7728.a", 
              "name": [
                "BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patel", 
            "givenName": "Jayesh B.", 
            "id": "sg:person.014440621645.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014440621645.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southwest Aluminum (Group) Co., CHINALCO, 401326, Chongqing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.469518.7", 
              "name": [
                "Southwest Aluminum (Group) Co., CHINALCO, 401326, Chongqing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xiangfu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK", 
              "id": "http://www.grid.ac/institutes/grid.7728.a", 
              "name": [
                "BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Zhongyun", 
            "id": "sg:person.014202761657.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02647099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023843959", 
              "https://doi.org/10.1007/bf02647099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-012-6441-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031618260", 
              "https://doi.org/10.1007/s10853-012-6441-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0334-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026049786", 
              "https://doi.org/10.1007/s11661-999-0334-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-997-0115-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012157342", 
              "https://doi.org/10.1007/s11663-997-0115-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12666-012-0194-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030017209", 
              "https://doi.org/10.1007/s12666-012-0194-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02642039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003032470", 
              "https://doi.org/10.1007/bf02642039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024967584", 
              "https://doi.org/10.1007/bf02643434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039145599", 
              "https://doi.org/10.1007/bf02667378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037363216", 
              "https://doi.org/10.1007/bf02654312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02650017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003457598", 
              "https://doi.org/10.1007/bf02650017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2959-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020585124", 
              "https://doi.org/10.1007/s11661-015-2959-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023616119", 
              "https://doi.org/10.1007/bf02645156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027277476", 
              "https://doi.org/10.1007/bf02643435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-005-0151-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022835549", 
              "https://doi.org/10.1007/s11661-005-0151-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02900233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085170701", 
              "https://doi.org/10.1007/bf02900233"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-26", 
        "datePublishedReg": "2017-06-26", 
        "description": "Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary \u03b1-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid\u2013solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1\u00a0K/s (\u00b0C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid\u2013solid phase region estimated by the Kozeny\u2013Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-017-1016-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4576283", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "secondary dendritic arm spacing", 
          "cast billets", 
          "melt conditioning", 
          "grain refinement", 
          "direct-chill casting", 
          "cooling rate", 
          "channel segregation", 
          "significant grain refinement", 
          "intensive melt shearing", 
          "dendritic arm spacing", 
          "local cooling rate", 
          "MC-DC", 
          "critical cooling rate", 
          "phase region", 
          "aluminum alloy", 
          "melt shearing", 
          "uniform microstructure", 
          "Kozeny\u2013Carman relationship", 
          "solidification defects", 
          "intensive shearing", 
          "solidification microstructure", 
          "mechanical properties", 
          "solidification process", 
          "Al phase", 
          "metallographic results", 
          "dendritic grains", 
          "arm spacing", 
          "billet", 
          "alloy", 
          "improved permeability", 
          "casting", 
          "microstructure", 
          "defect formation", 
          "sump", 
          "shearing", 
          "macrosegregation", 
          "forging", 
          "streamlines", 
          "potential improvements", 
          "technology", 
          "DC", 
          "microporosity", 
          "refinement", 
          "segregation", 
          "grains", 
          "melt", 
          "spacing", 
          "properties", 
          "permeability", 
          "conditioning", 
          "improvement", 
          "formation", 
          "phase", 
          "process", 
          "rate", 
          "defects", 
          "region", 
          "reduction", 
          "results", 
          "mechanism", 
          "suppression", 
          "relationship", 
          "prevention", 
          "industrial scale DC", 
          "scale DC", 
          "A4032 aluminum alloy", 
          "fine secondary dendritic arm spacing", 
          "liquid\u2013solid phase region", 
          "fine equiaxed dendritic grains", 
          "equiaxed dendritic grains", 
          "MC-DC casting", 
          "quantitative metallographic results", 
          "refinement of microporosity", 
          "MC-DC cast billets", 
          "Chill Cast Billets", 
          "A4032 Alloy"
        ], 
        "name": "Grain Refinement and Improvement of Solidification Defects in Direct-Chill Cast Billets of A4032 Alloy by Melt Conditioning", 
        "pagination": "2481-2492", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086305151"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-017-1016-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-017-1016-7", 
          "https://app.dimensions.ai/details/publication/pub.1086305151"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_729.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-017-1016-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-017-1016-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-017-1016-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-017-1016-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-017-1016-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      22 PREDICATES      116 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-017-1016-7 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N250fa00f872d46939e37b8bfa10a7f78
    4 schema:citation sg:pub.10.1007/bf02642039
    5 sg:pub.10.1007/bf02643434
    6 sg:pub.10.1007/bf02643435
    7 sg:pub.10.1007/bf02645156
    8 sg:pub.10.1007/bf02647099
    9 sg:pub.10.1007/bf02650017
    10 sg:pub.10.1007/bf02654312
    11 sg:pub.10.1007/bf02667378
    12 sg:pub.10.1007/bf02900233
    13 sg:pub.10.1007/s10853-012-6441-z
    14 sg:pub.10.1007/s11661-005-0151-y
    15 sg:pub.10.1007/s11661-015-2959-4
    16 sg:pub.10.1007/s11661-999-0334-z
    17 sg:pub.10.1007/s11663-997-0115-2
    18 sg:pub.10.1007/s12666-012-0194-x
    19 schema:datePublished 2017-06-26
    20 schema:datePublishedReg 2017-06-26
    21 schema:description Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary α-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid–solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1 K/s (°C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid–solid phase region estimated by the Kozeny–Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N9f0149cd67d048e0b03b26ca6397ec5e
    26 Ncd8631d3230d431a8adca2c1e3265b58
    27 sg:journal.1136775
    28 schema:keywords A4032 Alloy
    29 A4032 aluminum alloy
    30 Al phase
    31 Chill Cast Billets
    32 DC
    33 Kozeny–Carman relationship
    34 MC-DC
    35 MC-DC cast billets
    36 MC-DC casting
    37 alloy
    38 aluminum alloy
    39 arm spacing
    40 billet
    41 cast billets
    42 casting
    43 channel segregation
    44 conditioning
    45 cooling rate
    46 critical cooling rate
    47 defect formation
    48 defects
    49 dendritic arm spacing
    50 dendritic grains
    51 direct-chill casting
    52 equiaxed dendritic grains
    53 fine equiaxed dendritic grains
    54 fine secondary dendritic arm spacing
    55 forging
    56 formation
    57 grain refinement
    58 grains
    59 improved permeability
    60 improvement
    61 industrial scale DC
    62 intensive melt shearing
    63 intensive shearing
    64 liquid–solid phase region
    65 local cooling rate
    66 macrosegregation
    67 mechanical properties
    68 mechanism
    69 melt
    70 melt conditioning
    71 melt shearing
    72 metallographic results
    73 microporosity
    74 microstructure
    75 permeability
    76 phase
    77 phase region
    78 potential improvements
    79 prevention
    80 process
    81 properties
    82 quantitative metallographic results
    83 rate
    84 reduction
    85 refinement
    86 refinement of microporosity
    87 region
    88 relationship
    89 results
    90 scale DC
    91 secondary dendritic arm spacing
    92 segregation
    93 shearing
    94 significant grain refinement
    95 solidification defects
    96 solidification microstructure
    97 solidification process
    98 spacing
    99 streamlines
    100 sump
    101 suppression
    102 technology
    103 uniform microstructure
    104 schema:name Grain Refinement and Improvement of Solidification Defects in Direct-Chill Cast Billets of A4032 Alloy by Melt Conditioning
    105 schema:pagination 2481-2492
    106 schema:productId N3b19c334f39747cb8e46ea52bc72c347
    107 N7a8a1bf07631459bb8fa45f121af27dd
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086305151
    109 https://doi.org/10.1007/s11663-017-1016-7
    110 schema:sdDatePublished 2022-01-01T18:42
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N1c8f244775164fe3b515bb2f55e2b32a
    113 schema:url https://doi.org/10.1007/s11663-017-1016-7
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N1c8f244775164fe3b515bb2f55e2b32a schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N250fa00f872d46939e37b8bfa10a7f78 rdf:first sg:person.013446676411.36
    120 rdf:rest Nc7ec4ece10f54e0ea2b75a43ac65c9bb
    121 N289230560a114d8cb5850f57cf4a9285 rdf:first Nb80d4ea33d764b258f8dfc80fe7bfd9a
    122 rdf:rest N6d1174b0943b4d6b83a5d453ae563858
    123 N3b19c334f39747cb8e46ea52bc72c347 schema:name dimensions_id
    124 schema:value pub.1086305151
    125 rdf:type schema:PropertyValue
    126 N54a6e2b3da36401fb40e37d8b19e495c schema:affiliation grid-institutes:None
    127 schema:familyName Zhao
    128 schema:givenName Pizhi
    129 rdf:type schema:Person
    130 N6d1174b0943b4d6b83a5d453ae563858 rdf:first sg:person.014440621645.61
    131 rdf:rest N7b45e34da0f24091b152d0ec291afbf3
    132 N7a8a1bf07631459bb8fa45f121af27dd schema:name doi
    133 schema:value 10.1007/s11663-017-1016-7
    134 rdf:type schema:PropertyValue
    135 N7b45e34da0f24091b152d0ec291afbf3 rdf:first Nf035aaade56244a18bcbda0e6fd532ce
    136 rdf:rest N7f62d1b78c604b43aae05a19671e6b34
    137 N7f62d1b78c604b43aae05a19671e6b34 rdf:first sg:person.014202761657.20
    138 rdf:rest rdf:nil
    139 N9f0149cd67d048e0b03b26ca6397ec5e schema:volumeNumber 48
    140 rdf:type schema:PublicationVolume
    141 Nb80d4ea33d764b258f8dfc80fe7bfd9a schema:affiliation grid-institutes:grid.469518.7
    142 schema:familyName Yang
    143 schema:givenName Rongdong
    144 rdf:type schema:Person
    145 Nc7ec4ece10f54e0ea2b75a43ac65c9bb rdf:first N54a6e2b3da36401fb40e37d8b19e495c
    146 rdf:rest N289230560a114d8cb5850f57cf4a9285
    147 Ncd8631d3230d431a8adca2c1e3265b58 schema:issueNumber 5
    148 rdf:type schema:PublicationIssue
    149 Nf035aaade56244a18bcbda0e6fd532ce schema:affiliation grid-institutes:grid.469518.7
    150 schema:familyName Chen
    151 schema:givenName Xiangfu
    152 rdf:type schema:Person
    153 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Engineering
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Materials Engineering
    158 rdf:type schema:DefinedTerm
    159 sg:grant.4576283 http://pending.schema.org/fundedItem sg:pub.10.1007/s11663-017-1016-7
    160 rdf:type schema:MonetaryGrant
    161 sg:journal.1136775 schema:issn 1073-5615
    162 1543-1916
    163 schema:name Metallurgical and Materials Transactions B
    164 schema:publisher Springer Nature
    165 rdf:type schema:Periodical
    166 sg:person.013446676411.36 schema:affiliation grid-institutes:grid.7728.a
    167 schema:familyName Li
    168 schema:givenName Hu-Tian
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446676411.36
    170 rdf:type schema:Person
    171 sg:person.014202761657.20 schema:affiliation grid-institutes:grid.7728.a
    172 schema:familyName Fan
    173 schema:givenName Zhongyun
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20
    175 rdf:type schema:Person
    176 sg:person.014440621645.61 schema:affiliation grid-institutes:grid.7728.a
    177 schema:familyName Patel
    178 schema:givenName Jayesh B.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014440621645.61
    180 rdf:type schema:Person
    181 sg:pub.10.1007/bf02642039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003032470
    182 https://doi.org/10.1007/bf02642039
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf02643434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024967584
    185 https://doi.org/10.1007/bf02643434
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf02643435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027277476
    188 https://doi.org/10.1007/bf02643435
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/bf02645156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023616119
    191 https://doi.org/10.1007/bf02645156
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf02647099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023843959
    194 https://doi.org/10.1007/bf02647099
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf02650017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003457598
    197 https://doi.org/10.1007/bf02650017
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/bf02654312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037363216
    200 https://doi.org/10.1007/bf02654312
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/bf02667378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039145599
    203 https://doi.org/10.1007/bf02667378
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/bf02900233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085170701
    206 https://doi.org/10.1007/bf02900233
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10853-012-6441-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031618260
    209 https://doi.org/10.1007/s10853-012-6441-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s11661-005-0151-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022835549
    212 https://doi.org/10.1007/s11661-005-0151-y
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s11661-015-2959-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020585124
    215 https://doi.org/10.1007/s11661-015-2959-4
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s11661-999-0334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049786
    218 https://doi.org/10.1007/s11661-999-0334-z
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s11663-997-0115-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012157342
    221 https://doi.org/10.1007/s11663-997-0115-2
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s12666-012-0194-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030017209
    224 https://doi.org/10.1007/s12666-012-0194-x
    225 rdf:type schema:CreativeWork
    226 grid-institutes:None schema:alternateName Chinalco Materials Application Research Institute Co., Ltd., 100082, Beijing, P.R. China
    227 schema:name Chinalco Materials Application Research Institute Co., Ltd., 100082, Beijing, P.R. China
    228 rdf:type schema:Organization
    229 grid-institutes:grid.469518.7 schema:alternateName Southwest Aluminum (Group) Co., CHINALCO, 401326, Chongqing, P.R. China
    230 schema:name Southwest Aluminum (Group) Co., CHINALCO, 401326, Chongqing, P.R. China
    231 rdf:type schema:Organization
    232 grid-institutes:grid.7728.a schema:alternateName BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK
    233 schema:name BCAST, Brunel University London, Uxbridge, UB8 3PH, Middlesex, UK
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...