Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04-10

AUTHORS

O. Mirgaux, D. Ablitzer, E. Waz, J.P. Bellot

ABSTRACT

The removal of inclusions by flotation in mechanically agitated vessels is widely used in liquid aluminum treatments. Originating from different sources (oxide skins, refractory, or recycling wastes), inclusions may have disastrous repercussions such as deterioration of the physical properties of the cast products or difficulties during forging processes. With the aim of both a better understanding of the physical processes acting during flotation and the optimization of the refining process, a mathematical modeling of the behavior of the population of inclusions has been set up. Transport phenomena, agglomeration of inclusions, and flotation are considered here. The model combines population balance with convective transport of the inclusions, in order to calculate the time evolution of the inclusion size distribution. An operator-splitting technique is employed to solve the coupled population balance equation (PBE) and the transport equation. The transport equation is solved using a finite volume technique associated with a total variation diminishing scheme, whereas the PBE resolution relies on the fixed pivot technique developed by Kumar and Ramkrishna. A laboratory-scale flotation vessel is modeled and the results of a two-dimensional (2-D) simulation are presented. More... »

PAGES

363-375

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3

DOI

http://dx.doi.org/10.1007/s11663-009-9233-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021213924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirgaux", 
        "givenName": "O.", 
        "id": "sg:person.011023417347.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023417347.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ablitzer", 
        "givenName": "D.", 
        "id": "sg:person.014205214457.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205214457.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waz", 
        "givenName": "E.", 
        "id": "sg:person.012555610262.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555610262.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellot", 
        "givenName": "J.P.", 
        "id": "sg:person.013252275411.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252275411.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-03915-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009052860", 
          "https://doi.org/10.1007/978-3-662-03915-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-006-0021-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039383466", 
          "https://doi.org/10.1007/s11663-006-0021-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-002-0014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006283287", 
          "https://doi.org/10.1007/s11663-002-0014-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04-10", 
    "datePublishedReg": "2009-04-10", 
    "description": "The removal of inclusions by flotation in mechanically agitated vessels is widely used in liquid aluminum treatments. Originating from different sources (oxide skins, refractory, or recycling wastes), inclusions may have disastrous repercussions such as deterioration of the physical properties of the cast products or difficulties during forging processes. With the aim of both a better understanding of the physical processes acting during flotation and the optimization of the refining process, a mathematical modeling of the behavior of the population of inclusions has been set up. Transport phenomena, agglomeration of inclusions, and flotation are considered here. The model combines population balance with convective transport of the inclusions, in order to calculate the time evolution of the inclusion size distribution. An operator-splitting technique is employed to solve the coupled population balance equation (PBE) and the transport equation. The transport equation is solved using a finite volume technique associated with a total variation diminishing scheme, whereas the PBE resolution relies on the fixed pivot technique developed by Kumar and Ramkrishna. A laboratory-scale flotation vessel is modeled and the results of a two-dimensional (2-D) simulation are presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11663-009-9233-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136775", 
        "issn": [
          "1073-5615", 
          "1543-1916"
        ], 
        "name": "Metallurgical and Materials Transactions B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "population balance equation", 
      "mathematical modeling", 
      "transport equation", 
      "operator-splitting technique", 
      "finite volume technique", 
      "populations of inclusions", 
      "agglomeration of inclusions", 
      "removal of inclusions", 
      "two-dimensional simulations", 
      "inclusion size distribution", 
      "pivot technique", 
      "disastrous repercussions", 
      "cast products", 
      "flotation vessels", 
      "volume technique", 
      "equations", 
      "population balance", 
      "balance equations", 
      "time evolution", 
      "transport phenomena", 
      "computer simulation", 
      "stirred reactor", 
      "flotation", 
      "convective transport", 
      "refining process", 
      "size distribution", 
      "physical properties", 
      "physical processes", 
      "total variation", 
      "modeling", 
      "simulations", 
      "optimization", 
      "Ramkrishna", 
      "reactor", 
      "scheme", 
      "technique", 
      "agglomeration", 
      "process", 
      "Kumar", 
      "model", 
      "properties", 
      "removal", 
      "transport", 
      "behavior", 
      "distribution", 
      "aluminum treatment", 
      "phenomenon", 
      "inclusion", 
      "order", 
      "resolution", 
      "vessels", 
      "better understanding", 
      "difficulties", 
      "different sources", 
      "deterioration", 
      "source", 
      "results", 
      "evolution", 
      "products", 
      "variation", 
      "balance", 
      "purification", 
      "understanding", 
      "aim", 
      "treatment", 
      "population", 
      "repercussions", 
      "liquid aluminum treatments", 
      "PBE resolution", 
      "laboratory-scale flotation vessel", 
      "Molten Aluminum Purification", 
      "Aluminum Purification"
    ], 
    "name": "Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor", 
    "pagination": "363-375", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021213924"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11663-009-9233-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11663-009-9233-3", 
      "https://app.dimensions.ai/details/publication/pub.1021213924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11663-009-9233-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      100 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11663-009-9233-3 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N0b88eb44b4c041eb899716273b6fe21c
4 schema:citation sg:pub.10.1007/978-3-662-03915-1
5 sg:pub.10.1007/s11663-002-0014-5
6 sg:pub.10.1007/s11663-006-0021-z
7 schema:datePublished 2009-04-10
8 schema:datePublishedReg 2009-04-10
9 schema:description The removal of inclusions by flotation in mechanically agitated vessels is widely used in liquid aluminum treatments. Originating from different sources (oxide skins, refractory, or recycling wastes), inclusions may have disastrous repercussions such as deterioration of the physical properties of the cast products or difficulties during forging processes. With the aim of both a better understanding of the physical processes acting during flotation and the optimization of the refining process, a mathematical modeling of the behavior of the population of inclusions has been set up. Transport phenomena, agglomeration of inclusions, and flotation are considered here. The model combines population balance with convective transport of the inclusions, in order to calculate the time evolution of the inclusion size distribution. An operator-splitting technique is employed to solve the coupled population balance equation (PBE) and the transport equation. The transport equation is solved using a finite volume technique associated with a total variation diminishing scheme, whereas the PBE resolution relies on the fixed pivot technique developed by Kumar and Ramkrishna. A laboratory-scale flotation vessel is modeled and the results of a two-dimensional (2-D) simulation are presented.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N616fde936be74428aed575730971a40a
14 Nc10c06f6e2064b6ea624d3a7a203cee6
15 sg:journal.1136775
16 schema:keywords Aluminum Purification
17 Kumar
18 Molten Aluminum Purification
19 PBE resolution
20 Ramkrishna
21 agglomeration
22 agglomeration of inclusions
23 aim
24 aluminum treatment
25 balance
26 balance equations
27 behavior
28 better understanding
29 cast products
30 computer simulation
31 convective transport
32 deterioration
33 different sources
34 difficulties
35 disastrous repercussions
36 distribution
37 equations
38 evolution
39 finite volume technique
40 flotation
41 flotation vessels
42 inclusion
43 inclusion size distribution
44 laboratory-scale flotation vessel
45 liquid aluminum treatments
46 mathematical modeling
47 model
48 modeling
49 operator-splitting technique
50 optimization
51 order
52 phenomenon
53 physical processes
54 physical properties
55 pivot technique
56 population
57 population balance
58 population balance equation
59 populations of inclusions
60 process
61 products
62 properties
63 purification
64 reactor
65 refining process
66 removal
67 removal of inclusions
68 repercussions
69 resolution
70 results
71 scheme
72 simulations
73 size distribution
74 source
75 stirred reactor
76 technique
77 time evolution
78 total variation
79 transport
80 transport equation
81 transport phenomena
82 treatment
83 two-dimensional simulations
84 understanding
85 variation
86 vessels
87 volume technique
88 schema:name Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor
89 schema:pagination 363-375
90 schema:productId N365448d8c2d5442cb0ad54e5371c6bad
91 N85c4765e1a6c4d8e91f79e20d38817c8
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021213924
93 https://doi.org/10.1007/s11663-009-9233-3
94 schema:sdDatePublished 2022-01-01T18:19
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N657d407dece7427ba662737ddb09dc87
97 schema:url https://doi.org/10.1007/s11663-009-9233-3
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0b88eb44b4c041eb899716273b6fe21c rdf:first sg:person.011023417347.99
102 rdf:rest Nd6e28b26608b4035acd2f494442dd03a
103 N365448d8c2d5442cb0ad54e5371c6bad schema:name dimensions_id
104 schema:value pub.1021213924
105 rdf:type schema:PropertyValue
106 N519dae0db5f44acf9112504a2a1eb12d rdf:first sg:person.013252275411.07
107 rdf:rest rdf:nil
108 N616fde936be74428aed575730971a40a schema:issueNumber 3
109 rdf:type schema:PublicationIssue
110 N657d407dece7427ba662737ddb09dc87 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N85c4765e1a6c4d8e91f79e20d38817c8 schema:name doi
113 schema:value 10.1007/s11663-009-9233-3
114 rdf:type schema:PropertyValue
115 N97abe16484b04d0f93d21f4cda621257 rdf:first sg:person.012555610262.18
116 rdf:rest N519dae0db5f44acf9112504a2a1eb12d
117 Nc10c06f6e2064b6ea624d3a7a203cee6 schema:volumeNumber 40
118 rdf:type schema:PublicationVolume
119 Nd6e28b26608b4035acd2f494442dd03a rdf:first sg:person.014205214457.50
120 rdf:rest N97abe16484b04d0f93d21f4cda621257
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
125 schema:name Resources Engineering and Extractive Metallurgy
126 rdf:type schema:DefinedTerm
127 sg:journal.1136775 schema:issn 1073-5615
128 1543-1916
129 schema:name Metallurgical and Materials Transactions B
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.011023417347.99 schema:affiliation grid-institutes:grid.29172.3f
133 schema:familyName Mirgaux
134 schema:givenName O.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023417347.99
136 rdf:type schema:Person
137 sg:person.012555610262.18 schema:affiliation grid-institutes:None
138 schema:familyName Waz
139 schema:givenName E.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555610262.18
141 rdf:type schema:Person
142 sg:person.013252275411.07 schema:affiliation grid-institutes:grid.29172.3f
143 schema:familyName Bellot
144 schema:givenName J.P.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252275411.07
146 rdf:type schema:Person
147 sg:person.014205214457.50 schema:affiliation grid-institutes:grid.29172.3f
148 schema:familyName Ablitzer
149 schema:givenName D.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205214457.50
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-662-03915-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009052860
153 https://doi.org/10.1007/978-3-662-03915-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11663-002-0014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006283287
156 https://doi.org/10.1007/s11663-002-0014-5
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11663-006-0021-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039383466
159 https://doi.org/10.1007/s11663-006-0021-z
160 rdf:type schema:CreativeWork
161 grid-institutes:None schema:alternateName ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France
162 schema:name ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France
163 rdf:type schema:Organization
164 grid-institutes:grid.29172.3f schema:alternateName IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France
165 schema:name IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...