Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04-10

AUTHORS

O. Mirgaux, D. Ablitzer, E. Waz, J.P. Bellot

ABSTRACT

The removal of inclusions by flotation in mechanically agitated vessels is widely used in liquid aluminum treatments. Originating from different sources (oxide skins, refractory, or recycling wastes), inclusions may have disastrous repercussions such as deterioration of the physical properties of the cast products or difficulties during forging processes. With the aim of both a better understanding of the physical processes acting during flotation and the optimization of the refining process, a mathematical modeling of the behavior of the population of inclusions has been set up. Transport phenomena, agglomeration of inclusions, and flotation are considered here. The model combines population balance with convective transport of the inclusions, in order to calculate the time evolution of the inclusion size distribution. An operator-splitting technique is employed to solve the coupled population balance equation (PBE) and the transport equation. The transport equation is solved using a finite volume technique associated with a total variation diminishing scheme, whereas the PBE resolution relies on the fixed pivot technique developed by Kumar and Ramkrishna. A laboratory-scale flotation vessel is modeled and the results of a two-dimensional (2-D) simulation are presented. More... »

PAGES

363-375

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3

DOI

http://dx.doi.org/10.1007/s11663-009-9233-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021213924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirgaux", 
        "givenName": "O.", 
        "id": "sg:person.011023417347.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023417347.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ablitzer", 
        "givenName": "D.", 
        "id": "sg:person.014205214457.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205214457.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waz", 
        "givenName": "E.", 
        "id": "sg:person.012555610262.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555610262.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellot", 
        "givenName": "J.P.", 
        "id": "sg:person.013252275411.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252275411.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11663-002-0014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006283287", 
          "https://doi.org/10.1007/s11663-002-0014-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03915-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009052860", 
          "https://doi.org/10.1007/978-3-662-03915-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-006-0021-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039383466", 
          "https://doi.org/10.1007/s11663-006-0021-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04-10", 
    "datePublishedReg": "2009-04-10", 
    "description": "The removal of inclusions by flotation in mechanically agitated vessels is widely used in liquid aluminum treatments. Originating from different sources (oxide skins, refractory, or recycling wastes), inclusions may have disastrous repercussions such as deterioration of the physical properties of the cast products or difficulties during forging processes. With the aim of both a better understanding of the physical processes acting during flotation and the optimization of the refining process, a mathematical modeling of the behavior of the population of inclusions has been set up. Transport phenomena, agglomeration of inclusions, and flotation are considered here. The model combines population balance with convective transport of the inclusions, in order to calculate the time evolution of the inclusion size distribution. An operator-splitting technique is employed to solve the coupled population balance equation (PBE) and the transport equation. The transport equation is solved using a finite volume technique associated with a total variation diminishing scheme, whereas the PBE resolution relies on the fixed pivot technique developed by Kumar and Ramkrishna. A laboratory-scale flotation vessel is modeled and the results of a two-dimensional (2-D) simulation are presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11663-009-9233-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136775", 
        "issn": [
          "1073-5615", 
          "1543-1916"
        ], 
        "name": "Metallurgical and Materials Transactions B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "population balance equation", 
      "transport equation", 
      "mathematical modeling", 
      "operator splitting technique", 
      "finite volume technique", 
      "populations of inclusions", 
      "agglomeration of inclusions", 
      "removal of inclusions", 
      "inclusion size distribution", 
      "two-dimensional simulations", 
      "pivot technique", 
      "flotation vessels", 
      "time evolution", 
      "balance equations", 
      "cast products", 
      "equations", 
      "volume technique", 
      "population balance", 
      "transport phenomena", 
      "computer simulations", 
      "physical processes", 
      "stirred reactor", 
      "convective transport", 
      "refining process", 
      "flotation", 
      "size distribution", 
      "physical properties", 
      "disastrous repercussions", 
      "total variation", 
      "simulations", 
      "modeling", 
      "Ramkrishna", 
      "optimization", 
      "reactor", 
      "scheme", 
      "agglomeration", 
      "technique", 
      "process", 
      "Kumar", 
      "model", 
      "properties", 
      "distribution", 
      "removal", 
      "phenomenon", 
      "transport", 
      "behavior", 
      "inclusion", 
      "different sources", 
      "order", 
      "resolution", 
      "evolution", 
      "aluminum treatment", 
      "vessels", 
      "deterioration", 
      "better understanding", 
      "source", 
      "results", 
      "variation", 
      "products", 
      "difficulties", 
      "balance", 
      "purification", 
      "understanding", 
      "aim", 
      "treatment", 
      "population", 
      "repercussions"
    ], 
    "name": "Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor", 
    "pagination": "363-375", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021213924"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11663-009-9233-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11663-009-9233-3", 
      "https://app.dimensions.ai/details/publication/pub.1021213924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_478.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11663-009-9233-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-009-9233-3'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      95 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11663-009-9233-3 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Nca9ea231bb854ec0ad27b367a9c9969c
4 schema:citation sg:pub.10.1007/978-3-662-03915-1
5 sg:pub.10.1007/s11663-002-0014-5
6 sg:pub.10.1007/s11663-006-0021-z
7 schema:datePublished 2009-04-10
8 schema:datePublishedReg 2009-04-10
9 schema:description The removal of inclusions by flotation in mechanically agitated vessels is widely used in liquid aluminum treatments. Originating from different sources (oxide skins, refractory, or recycling wastes), inclusions may have disastrous repercussions such as deterioration of the physical properties of the cast products or difficulties during forging processes. With the aim of both a better understanding of the physical processes acting during flotation and the optimization of the refining process, a mathematical modeling of the behavior of the population of inclusions has been set up. Transport phenomena, agglomeration of inclusions, and flotation are considered here. The model combines population balance with convective transport of the inclusions, in order to calculate the time evolution of the inclusion size distribution. An operator-splitting technique is employed to solve the coupled population balance equation (PBE) and the transport equation. The transport equation is solved using a finite volume technique associated with a total variation diminishing scheme, whereas the PBE resolution relies on the fixed pivot technique developed by Kumar and Ramkrishna. A laboratory-scale flotation vessel is modeled and the results of a two-dimensional (2-D) simulation are presented.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0345f424c0464a23b7f3646ba9beec4e
14 Nf0fae8c1fb9f4cdd837e7be8d14c93fe
15 sg:journal.1136775
16 schema:keywords Kumar
17 Ramkrishna
18 agglomeration
19 agglomeration of inclusions
20 aim
21 aluminum treatment
22 balance
23 balance equations
24 behavior
25 better understanding
26 cast products
27 computer simulations
28 convective transport
29 deterioration
30 different sources
31 difficulties
32 disastrous repercussions
33 distribution
34 equations
35 evolution
36 finite volume technique
37 flotation
38 flotation vessels
39 inclusion
40 inclusion size distribution
41 mathematical modeling
42 model
43 modeling
44 operator splitting technique
45 optimization
46 order
47 phenomenon
48 physical processes
49 physical properties
50 pivot technique
51 population
52 population balance
53 population balance equation
54 populations of inclusions
55 process
56 products
57 properties
58 purification
59 reactor
60 refining process
61 removal
62 removal of inclusions
63 repercussions
64 resolution
65 results
66 scheme
67 simulations
68 size distribution
69 source
70 stirred reactor
71 technique
72 time evolution
73 total variation
74 transport
75 transport equation
76 transport phenomena
77 treatment
78 two-dimensional simulations
79 understanding
80 variation
81 vessels
82 volume technique
83 schema:name Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor
84 schema:pagination 363-375
85 schema:productId N3425c1176e244cb9a2c875f71ca94d2d
86 Nbe899b37ead043fba3f26e61dca72df0
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021213924
88 https://doi.org/10.1007/s11663-009-9233-3
89 schema:sdDatePublished 2022-05-20T07:25
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nb02f6b2c1888445aafd782cbf8c61408
92 schema:url https://doi.org/10.1007/s11663-009-9233-3
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0345f424c0464a23b7f3646ba9beec4e schema:volumeNumber 40
97 rdf:type schema:PublicationVolume
98 N3425c1176e244cb9a2c875f71ca94d2d schema:name doi
99 schema:value 10.1007/s11663-009-9233-3
100 rdf:type schema:PropertyValue
101 N9b373db8589b4a1d8a9a3391dad0e15c rdf:first sg:person.013252275411.07
102 rdf:rest rdf:nil
103 Na1230ee8880b47f98d134f85562abe8a rdf:first sg:person.014205214457.50
104 rdf:rest Nb92a02ef0a83414cab8fb252abb4feab
105 Nb02f6b2c1888445aafd782cbf8c61408 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nb92a02ef0a83414cab8fb252abb4feab rdf:first sg:person.012555610262.18
108 rdf:rest N9b373db8589b4a1d8a9a3391dad0e15c
109 Nbe899b37ead043fba3f26e61dca72df0 schema:name dimensions_id
110 schema:value pub.1021213924
111 rdf:type schema:PropertyValue
112 Nca9ea231bb854ec0ad27b367a9c9969c rdf:first sg:person.011023417347.99
113 rdf:rest Na1230ee8880b47f98d134f85562abe8a
114 Nf0fae8c1fb9f4cdd837e7be8d14c93fe schema:issueNumber 3
115 rdf:type schema:PublicationIssue
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
120 schema:name Resources Engineering and Extractive Metallurgy
121 rdf:type schema:DefinedTerm
122 sg:journal.1136775 schema:issn 1073-5615
123 1543-1916
124 schema:name Metallurgical and Materials Transactions B
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.011023417347.99 schema:affiliation grid-institutes:grid.29172.3f
128 schema:familyName Mirgaux
129 schema:givenName O.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023417347.99
131 rdf:type schema:Person
132 sg:person.012555610262.18 schema:affiliation grid-institutes:None
133 schema:familyName Waz
134 schema:givenName E.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555610262.18
136 rdf:type schema:Person
137 sg:person.013252275411.07 schema:affiliation grid-institutes:grid.29172.3f
138 schema:familyName Bellot
139 schema:givenName J.P.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252275411.07
141 rdf:type schema:Person
142 sg:person.014205214457.50 schema:affiliation grid-institutes:grid.29172.3f
143 schema:familyName Ablitzer
144 schema:givenName D.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205214457.50
146 rdf:type schema:Person
147 sg:pub.10.1007/978-3-662-03915-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009052860
148 https://doi.org/10.1007/978-3-662-03915-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11663-002-0014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006283287
151 https://doi.org/10.1007/s11663-002-0014-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11663-006-0021-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039383466
154 https://doi.org/10.1007/s11663-006-0021-z
155 rdf:type schema:CreativeWork
156 grid-institutes:None schema:alternateName ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France
157 schema:name ALCAN, Centre de Recherches de Voreppe, 38341, Voreppe Cedex, France
158 rdf:type schema:Organization
159 grid-institutes:grid.29172.3f schema:alternateName IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France
160 schema:name IJL - SI2M - UMR 7198, Ecole des Mines de Nancy, Parc de Saurupt, 54042, Nancy, France
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...