Prediction of Macrosegregation in Steel Ingots: Influence of the Motion and the Morphology of Equiaxed Grains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10-21

AUTHORS

Hervé Combeau, Miha Založnik, Stéphane Hans, Pierre Emmanuel Richy

ABSTRACT

Although a significant amount of work has already been devoted to the prediction of macrosegregation in steel ingots, most models considered the solid phase as fixed. As a result, it was not possible to correctly predict the macrosegregation in the center of the product. It is generally suspected that the motion of the equiaxed grains is responsible for this macrosegregation. A multiphase and multiscale model that describes the evolution of the morphology of the equiaxed crystals and their motion is presented. The model was used to simulate the solidification of a 3.3-ton steel ingot. Computations that take into account the motion of dendritic and globular grains and computations with a fixed solid phase were performed, and the solidification and macrosegregation formation due to the grain motion and flow of interdendritic liquid were analyzed. The predicted macrosegregation patterns are compared to the experimental results. Most important, it is demonstrated that it is essential to consider the grain morphology, in order to properly model the influence of grain motion on macrosegregation. Further, due to increased computing power, the presented computations could be performed using finer computational grids than was possible in previous studies; this made possible the prediction of mesosegregations, notably A segregates. More... »

PAGES

289-304

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11663-008-9178-y

DOI

http://dx.doi.org/10.1007/s11663-008-9178-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002912688


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux et de M\u00e9tallurgie (LSG2M), Ecole des Mines de Nancy, Nancy-Universit\u00e9, Parc de Saurupt, CS 14234, F-54042, Nancy Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux et de M\u00e9tallurgie (LSG2M), Ecole des Mines de Nancy, Nancy-Universit\u00e9, Parc de Saurupt, CS 14234, F-54042, Nancy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Combeau", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.013734136671.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734136671.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux et de M\u00e9tallurgie (LSG2M), Ecole des Mines de Nancy, Nancy-Universit\u00e9, Parc de Saurupt, CS 14234, F-54042, Nancy Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux et de M\u00e9tallurgie (LSG2M), Ecole des Mines de Nancy, Nancy-Universit\u00e9, Parc de Saurupt, CS 14234, F-54042, Nancy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zalo\u017enik", 
        "givenName": "Miha", 
        "id": "sg:person.013767246573.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767246573.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aubert & Duval, BP 1, F-63770, Les Ancizes, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Aubert & Duval, BP 1, F-63770, Les Ancizes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hans", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.011171033431.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171033431.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aubert & Duval, BP 1, F-63770, Les Ancizes, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Aubert & Duval, BP 1, F-63770, Les Ancizes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richy", 
        "givenName": "Pierre Emmanuel", 
        "id": "sg:person.010441566231.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441566231.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02900233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085170701", 
          "https://doi.org/10.1007/bf02900233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0143-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021409837", 
          "https://doi.org/10.1007/s11661-998-0143-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02652369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030621688", 
          "https://doi.org/10.1007/bf02652369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029470619", 
          "https://doi.org/10.1007/bf02651234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0284-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011758469", 
          "https://doi.org/10.1007/s11661-999-0284-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02671251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012835501", 
          "https://doi.org/10.1007/bf02671251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052612984", 
          "https://doi.org/10.1007/bf02651165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02658128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051882470", 
          "https://doi.org/10.1007/bf02658128"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10-21", 
    "datePublishedReg": "2008-10-21", 
    "description": "Although a significant amount of work has already been devoted to the prediction of macrosegregation in steel ingots, most models considered the solid phase as fixed. As a result, it was not possible to correctly predict the macrosegregation in the center of the product. It is generally suspected that the motion of the equiaxed grains is responsible for this macrosegregation. A multiphase and multiscale model that describes the evolution of the morphology of the equiaxed crystals and their motion is presented. The model was used to simulate the solidification of a 3.3-ton steel ingot. Computations that take into account the motion of dendritic and globular grains and computations with a fixed solid phase were performed, and the solidification and macrosegregation formation due to the grain motion and flow of interdendritic liquid were analyzed. The predicted macrosegregation patterns are compared to the experimental results. Most important, it is demonstrated that it is essential to consider the grain morphology, in order to properly model the influence of grain motion on macrosegregation. Further, due to increased computing power, the presented computations could be performed using finer computational grids than was possible in previous studies; this made possible the prediction of mesosegregations, notably A segregates.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11663-008-9178-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136775", 
        "issn": [
          "1073-5615", 
          "1543-1916"
        ], 
        "name": "Metallurgical and Materials Transactions B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "prediction of macrosegregation", 
      "steel ingot", 
      "grain motion", 
      "fine computational grids", 
      "solid phase", 
      "equiaxed crystals", 
      "equiaxed grains", 
      "globular grains", 
      "macrosegregation formation", 
      "macrosegregation patterns", 
      "interdendritic liquid", 
      "macrosegregation", 
      "grain morphology", 
      "ingots", 
      "multiscale model", 
      "solidification", 
      "experimental results", 
      "computational grid", 
      "grains", 
      "motion", 
      "multiphase", 
      "morphology", 
      "prediction", 
      "grid", 
      "phase", 
      "liquid", 
      "flow", 
      "influence", 
      "significant amount", 
      "model", 
      "power", 
      "computation", 
      "results", 
      "most models", 
      "work", 
      "order", 
      "crystals", 
      "segregates", 
      "amount", 
      "account", 
      "formation", 
      "products", 
      "evolution", 
      "previous studies", 
      "study", 
      "center", 
      "patterns", 
      "prediction of mesosegregations", 
      "mesosegregations"
    ], 
    "name": "Prediction of Macrosegregation in Steel Ingots: Influence of the Motion and the Morphology of Equiaxed Grains", 
    "pagination": "289-304", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002912688"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11663-008-9178-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11663-008-9178-y", 
      "https://app.dimensions.ai/details/publication/pub.1002912688"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_470.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11663-008-9178-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-008-9178-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-008-9178-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-008-9178-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-008-9178-y'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      82 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11663-008-9178-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb65b9909692d4d8f8c7a12dcad079f6d
4 schema:citation sg:pub.10.1007/bf02651165
5 sg:pub.10.1007/bf02651234
6 sg:pub.10.1007/bf02652369
7 sg:pub.10.1007/bf02658128
8 sg:pub.10.1007/bf02671251
9 sg:pub.10.1007/bf02900233
10 sg:pub.10.1007/s11661-998-0143-9
11 sg:pub.10.1007/s11661-999-0284-5
12 schema:datePublished 2008-10-21
13 schema:datePublishedReg 2008-10-21
14 schema:description Although a significant amount of work has already been devoted to the prediction of macrosegregation in steel ingots, most models considered the solid phase as fixed. As a result, it was not possible to correctly predict the macrosegregation in the center of the product. It is generally suspected that the motion of the equiaxed grains is responsible for this macrosegregation. A multiphase and multiscale model that describes the evolution of the morphology of the equiaxed crystals and their motion is presented. The model was used to simulate the solidification of a 3.3-ton steel ingot. Computations that take into account the motion of dendritic and globular grains and computations with a fixed solid phase were performed, and the solidification and macrosegregation formation due to the grain motion and flow of interdendritic liquid were analyzed. The predicted macrosegregation patterns are compared to the experimental results. Most important, it is demonstrated that it is essential to consider the grain morphology, in order to properly model the influence of grain motion on macrosegregation. Further, due to increased computing power, the presented computations could be performed using finer computational grids than was possible in previous studies; this made possible the prediction of mesosegregations, notably A segregates.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3e4d48c775e5402bac46abea7eded944
19 N4708d1518d8742b582d300ab9d6625f7
20 sg:journal.1136775
21 schema:keywords account
22 amount
23 center
24 computation
25 computational grid
26 crystals
27 equiaxed crystals
28 equiaxed grains
29 evolution
30 experimental results
31 fine computational grids
32 flow
33 formation
34 globular grains
35 grain morphology
36 grain motion
37 grains
38 grid
39 influence
40 ingots
41 interdendritic liquid
42 liquid
43 macrosegregation
44 macrosegregation formation
45 macrosegregation patterns
46 mesosegregations
47 model
48 morphology
49 most models
50 motion
51 multiphase
52 multiscale model
53 order
54 patterns
55 phase
56 power
57 prediction
58 prediction of macrosegregation
59 prediction of mesosegregations
60 previous studies
61 products
62 results
63 segregates
64 significant amount
65 solid phase
66 solidification
67 steel ingot
68 study
69 work
70 schema:name Prediction of Macrosegregation in Steel Ingots: Influence of the Motion and the Morphology of Equiaxed Grains
71 schema:pagination 289-304
72 schema:productId N208eda76538d411faf5caad75c1bbde8
73 N3fcdf5d0304341c5a57bf3629977da44
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002912688
75 https://doi.org/10.1007/s11663-008-9178-y
76 schema:sdDatePublished 2022-01-01T18:19
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N8602619b8dd145be97ae1dafc3732739
79 schema:url https://doi.org/10.1007/s11663-008-9178-y
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N208eda76538d411faf5caad75c1bbde8 schema:name dimensions_id
84 schema:value pub.1002912688
85 rdf:type schema:PropertyValue
86 N2fd6fdf741bb4f8bb12990024908d49a rdf:first sg:person.011171033431.22
87 rdf:rest Ncd685d16c2fd48bc8a1c79e73fc11405
88 N3e4d48c775e5402bac46abea7eded944 schema:volumeNumber 40
89 rdf:type schema:PublicationVolume
90 N3fcdf5d0304341c5a57bf3629977da44 schema:name doi
91 schema:value 10.1007/s11663-008-9178-y
92 rdf:type schema:PropertyValue
93 N4708d1518d8742b582d300ab9d6625f7 schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 N8602619b8dd145be97ae1dafc3732739 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nafa28409b3a7489ca4ce14cb3a344df5 rdf:first sg:person.013767246573.69
98 rdf:rest N2fd6fdf741bb4f8bb12990024908d49a
99 Nb65b9909692d4d8f8c7a12dcad079f6d rdf:first sg:person.013734136671.76
100 rdf:rest Nafa28409b3a7489ca4ce14cb3a344df5
101 Ncd685d16c2fd48bc8a1c79e73fc11405 rdf:first sg:person.010441566231.03
102 rdf:rest rdf:nil
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1136775 schema:issn 1073-5615
110 1543-1916
111 schema:name Metallurgical and Materials Transactions B
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.010441566231.03 schema:affiliation grid-institutes:None
115 schema:familyName Richy
116 schema:givenName Pierre Emmanuel
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441566231.03
118 rdf:type schema:Person
119 sg:person.011171033431.22 schema:affiliation grid-institutes:None
120 schema:familyName Hans
121 schema:givenName Stéphane
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171033431.22
123 rdf:type schema:Person
124 sg:person.013734136671.76 schema:affiliation grid-institutes:grid.29172.3f
125 schema:familyName Combeau
126 schema:givenName Hervé
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734136671.76
128 rdf:type schema:Person
129 sg:person.013767246573.69 schema:affiliation grid-institutes:grid.29172.3f
130 schema:familyName Založnik
131 schema:givenName Miha
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767246573.69
133 rdf:type schema:Person
134 sg:pub.10.1007/bf02651165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052612984
135 https://doi.org/10.1007/bf02651165
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf02651234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029470619
138 https://doi.org/10.1007/bf02651234
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf02652369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030621688
141 https://doi.org/10.1007/bf02652369
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf02658128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051882470
144 https://doi.org/10.1007/bf02658128
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02671251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012835501
147 https://doi.org/10.1007/bf02671251
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02900233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085170701
150 https://doi.org/10.1007/bf02900233
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11661-998-0143-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021409837
153 https://doi.org/10.1007/s11661-998-0143-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11661-999-0284-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011758469
156 https://doi.org/10.1007/s11661-999-0284-5
157 rdf:type schema:CreativeWork
158 grid-institutes:None schema:alternateName Aubert & Duval, BP 1, F-63770, Les Ancizes, France
159 schema:name Aubert & Duval, BP 1, F-63770, Les Ancizes, France
160 rdf:type schema:Organization
161 grid-institutes:grid.29172.3f schema:alternateName Laboratoire de Science et Génie des Matériaux et de Métallurgie (LSG2M), Ecole des Mines de Nancy, Nancy-Université, Parc de Saurupt, CS 14234, F-54042, Nancy Cedex, France
162 schema:name Laboratoire de Science et Génie des Matériaux et de Métallurgie (LSG2M), Ecole des Mines de Nancy, Nancy-Université, Parc de Saurupt, CS 14234, F-54042, Nancy Cedex, France
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...