Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

J. P. Bellot, D. Ablitzer, E. Hess

ABSTRACT

The electron beam cold hearth melting (EBCHM) process has emerged as either an alternative or a complement to vacuum arc remelting, since it is capable of enhancing the elimination of hard-alpha inclusions by dissolution or sedimentation. The present article describes the use of a mathematical model to simulate the electron beam melting of titanium in a cold hearth. The mathematical model is based on the numerical solution of the coupled momentum, solute, and heat transport equations in a transient regime for a three dimension geometry. The model calculates the velocity, turbulence intensity, temperature, and alloy composition in the liquid and the solid phases. The calculation provides the overall heat balance and the volatilization of metallic elements such as aluminum. A postprocessor numerical tool simulates also the behavior of a hard-alpha inclusion during melting (trajectory and kinetics of dissolution). In order to demonstrate the usefulness of this model, the authors examine the influence of the casting rate and of the beam scanning frequency on the volatilization of aluminum and on the capacity of the process to remove hard-alpha defects. More... »

PAGES

845-854

References to SciGraph publications

  • 1997-12. Dissolution of hard-alpha inclusions in liquid titanium alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1984-06. A new finite element model for welding heat sources in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1991-05. The state of the art in electron beam melting and refining in JOM
  • 1992-01. Beam focusing characteristics and alloying element effects on high-intensity electron beam welding in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11663-000-0121-0

    DOI

    http://dx.doi.org/10.1007/s11663-000-0121-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003511135


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux M\u00e9talliques (UMR 7584), Ecole des Mines, 54042, Nancy, Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux M\u00e9talliques (UMR 7584), Ecole des Mines, 54042, Nancy, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellot", 
            "givenName": "J. P.", 
            "id": "sg:person.013252275411.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252275411.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux M\u00e9talliques (UMR 7584), Ecole des Mines, 54042, Nancy, Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Laboratoire de Science et G\u00e9nie des Mat\u00e9riaux M\u00e9talliques (UMR 7584), Ecole des Mines, 54042, Nancy, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ablitzer", 
            "givenName": "D.", 
            "id": "sg:person.014205214457.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205214457.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Ecole des Mines, IRSID Company, Maizieresles-Metz, France", 
              "id": "http://www.grid.ac/institutes/grid.463793.c", 
              "name": [
                "the Ecole des Mines, IRSID Company, Maizieresles-Metz, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hess", 
            "givenName": "E.", 
            "id": "sg:person.014774177631.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774177631.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11663-997-0054-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050065803", 
              "https://doi.org/10.1007/s11663-997-0054-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02654040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003922330", 
              "https://doi.org/10.1007/bf02654040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03220567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018904266", 
              "https://doi.org/10.1007/bf03220567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015516438", 
              "https://doi.org/10.1007/bf02667333"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-08", 
        "datePublishedReg": "2000-08-01", 
        "description": "The electron beam cold hearth melting (EBCHM) process has emerged as either an alternative or a complement to vacuum arc remelting, since it is capable of enhancing the elimination of hard-alpha inclusions by dissolution or sedimentation. The present article describes the use of a mathematical model to simulate the electron beam melting of titanium in a cold hearth. The mathematical model is based on the numerical solution of the coupled momentum, solute, and heat transport equations in a transient regime for a three dimension geometry. The model calculates the velocity, turbulence intensity, temperature, and alloy composition in the liquid and the solid phases. The calculation provides the overall heat balance and the volatilization of metallic elements such as aluminum. A postprocessor numerical tool simulates also the behavior of a hard-alpha inclusion during melting (trajectory and kinetics of dissolution). In order to demonstrate the usefulness of this model, the authors examine the influence of the casting rate and of the beam scanning frequency on the volatilization of aluminum and on the capacity of the process to remove hard-alpha defects.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11663-000-0121-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136775", 
            "issn": [
              "1073-5615", 
              "1543-1916"
            ], 
            "name": "Metallurgical and Materials Transactions B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "hard-alpha inclusions", 
          "electron beam cold hearth melting", 
          "electron beam melting", 
          "cold hearth melting", 
          "overall heat balance", 
          "beam scanning frequency", 
          "heat transport equation", 
          "mathematical model", 
          "turbulence intensity", 
          "inclusion removal", 
          "beam melting", 
          "cold hearth", 
          "numerical tool", 
          "heat balance", 
          "melting process", 
          "transport equation", 
          "scanning frequency", 
          "transient regime", 
          "numerical solution", 
          "solid phase", 
          "dimension geometry", 
          "metallic elements", 
          "aluminum", 
          "melting", 
          "volatilization", 
          "remelting", 
          "titanium", 
          "velocity", 
          "Ti", 
          "liquid", 
          "dissolution", 
          "temperature", 
          "process", 
          "model", 
          "geometry", 
          "removal", 
          "hearth", 
          "equations", 
          "momentum", 
          "solution", 
          "phase", 
          "behavior", 
          "solutes", 
          "influence", 
          "regime", 
          "sedimentation", 
          "capacity", 
          "calculations", 
          "order", 
          "defects", 
          "elements", 
          "present article", 
          "composition", 
          "inclusion", 
          "frequency", 
          "alternative", 
          "balance", 
          "rate", 
          "tool", 
          "intensity", 
          "use", 
          "elimination", 
          "authors", 
          "article", 
          "usefulness", 
          "complement", 
          "electron beam cold hearth melting (EBCHM) process", 
          "beam cold hearth melting (EBCHM) process", 
          "cold hearth melting (EBCHM) process", 
          "hearth melting (EBCHM) process", 
          "arc remelting", 
          "postprocessor numerical tool", 
          "volatilization of aluminum", 
          "hard-alpha defects", 
          "Aluminum volatilization", 
          "beam cold hearth melting", 
          "hearth melting"
        ], 
        "name": "Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys", 
        "pagination": "845-854", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003511135"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11663-000-0121-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11663-000-0121-0", 
          "https://app.dimensions.ai/details/publication/pub.1003511135"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_339.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11663-000-0121-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11663-000-0121-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11663-000-0121-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11663-000-0121-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11663-000-0121-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      22 PREDICATES      106 URIs      94 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11663-000-0121-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nf0e294e758844c33a29c36f92c90a084
    4 schema:citation sg:pub.10.1007/bf02654040
    5 sg:pub.10.1007/bf02667333
    6 sg:pub.10.1007/bf03220567
    7 sg:pub.10.1007/s11663-997-0054-y
    8 schema:datePublished 2000-08
    9 schema:datePublishedReg 2000-08-01
    10 schema:description The electron beam cold hearth melting (EBCHM) process has emerged as either an alternative or a complement to vacuum arc remelting, since it is capable of enhancing the elimination of hard-alpha inclusions by dissolution or sedimentation. The present article describes the use of a mathematical model to simulate the electron beam melting of titanium in a cold hearth. The mathematical model is based on the numerical solution of the coupled momentum, solute, and heat transport equations in a transient regime for a three dimension geometry. The model calculates the velocity, turbulence intensity, temperature, and alloy composition in the liquid and the solid phases. The calculation provides the overall heat balance and the volatilization of metallic elements such as aluminum. A postprocessor numerical tool simulates also the behavior of a hard-alpha inclusion during melting (trajectory and kinetics of dissolution). In order to demonstrate the usefulness of this model, the authors examine the influence of the casting rate and of the beam scanning frequency on the volatilization of aluminum and on the capacity of the process to remove hard-alpha defects.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N801ef2073c604ee3bd23ceaa60fc862a
    15 Na33233e7af6f426bbe378d7a8378a807
    16 sg:journal.1136775
    17 schema:keywords Aluminum volatilization
    18 Ti
    19 alternative
    20 aluminum
    21 arc remelting
    22 article
    23 authors
    24 balance
    25 beam cold hearth melting
    26 beam cold hearth melting (EBCHM) process
    27 beam melting
    28 beam scanning frequency
    29 behavior
    30 calculations
    31 capacity
    32 cold hearth
    33 cold hearth melting
    34 cold hearth melting (EBCHM) process
    35 complement
    36 composition
    37 defects
    38 dimension geometry
    39 dissolution
    40 electron beam cold hearth melting
    41 electron beam cold hearth melting (EBCHM) process
    42 electron beam melting
    43 elements
    44 elimination
    45 equations
    46 frequency
    47 geometry
    48 hard-alpha defects
    49 hard-alpha inclusions
    50 hearth
    51 hearth melting
    52 hearth melting (EBCHM) process
    53 heat balance
    54 heat transport equation
    55 inclusion
    56 inclusion removal
    57 influence
    58 intensity
    59 liquid
    60 mathematical model
    61 melting
    62 melting process
    63 metallic elements
    64 model
    65 momentum
    66 numerical solution
    67 numerical tool
    68 order
    69 overall heat balance
    70 phase
    71 postprocessor numerical tool
    72 present article
    73 process
    74 rate
    75 regime
    76 remelting
    77 removal
    78 scanning frequency
    79 sedimentation
    80 solid phase
    81 solutes
    82 solution
    83 temperature
    84 titanium
    85 tool
    86 transient regime
    87 transport equation
    88 turbulence intensity
    89 use
    90 usefulness
    91 velocity
    92 volatilization
    93 volatilization of aluminum
    94 schema:name Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys
    95 schema:pagination 845-854
    96 schema:productId N3aeb0e97f5b7450498391024e992e263
    97 N3b3e13076a5a47cc81eb372c19d82ef8
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003511135
    99 https://doi.org/10.1007/s11663-000-0121-0
    100 schema:sdDatePublished 2022-01-01T18:11
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N353f8979b84f4a12b94e38d0d3fe2b9b
    103 schema:url https://doi.org/10.1007/s11663-000-0121-0
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N353f8979b84f4a12b94e38d0d3fe2b9b schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N3aeb0e97f5b7450498391024e992e263 schema:name dimensions_id
    110 schema:value pub.1003511135
    111 rdf:type schema:PropertyValue
    112 N3b3e13076a5a47cc81eb372c19d82ef8 schema:name doi
    113 schema:value 10.1007/s11663-000-0121-0
    114 rdf:type schema:PropertyValue
    115 N56c3ff864d1e4d5b90b15b79faf8d738 rdf:first sg:person.014774177631.87
    116 rdf:rest rdf:nil
    117 N801ef2073c604ee3bd23ceaa60fc862a schema:volumeNumber 31
    118 rdf:type schema:PublicationVolume
    119 Na33233e7af6f426bbe378d7a8378a807 schema:issueNumber 4
    120 rdf:type schema:PublicationIssue
    121 Nf0e294e758844c33a29c36f92c90a084 rdf:first sg:person.013252275411.07
    122 rdf:rest Nf2fd6c8e54e0430da4c9e0f20dd7c5ff
    123 Nf2fd6c8e54e0430da4c9e0f20dd7c5ff rdf:first sg:person.014205214457.50
    124 rdf:rest N56c3ff864d1e4d5b90b15b79faf8d738
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Materials Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1136775 schema:issn 1073-5615
    132 1543-1916
    133 schema:name Metallurgical and Materials Transactions B
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.013252275411.07 schema:affiliation grid-institutes:None
    137 schema:familyName Bellot
    138 schema:givenName J. P.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252275411.07
    140 rdf:type schema:Person
    141 sg:person.014205214457.50 schema:affiliation grid-institutes:None
    142 schema:familyName Ablitzer
    143 schema:givenName D.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205214457.50
    145 rdf:type schema:Person
    146 sg:person.014774177631.87 schema:affiliation grid-institutes:grid.463793.c
    147 schema:familyName Hess
    148 schema:givenName E.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774177631.87
    150 rdf:type schema:Person
    151 sg:pub.10.1007/bf02654040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003922330
    152 https://doi.org/10.1007/bf02654040
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02667333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015516438
    155 https://doi.org/10.1007/bf02667333
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf03220567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018904266
    158 https://doi.org/10.1007/bf03220567
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11663-997-0054-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050065803
    161 https://doi.org/10.1007/s11663-997-0054-y
    162 rdf:type schema:CreativeWork
    163 grid-institutes:None schema:alternateName the Laboratoire de Science et Génie des Matériaux Métalliques (UMR 7584), Ecole des Mines, 54042, Nancy, Cedex, France
    164 schema:name the Laboratoire de Science et Génie des Matériaux Métalliques (UMR 7584), Ecole des Mines, 54042, Nancy, Cedex, France
    165 rdf:type schema:Organization
    166 grid-institutes:grid.463793.c schema:alternateName the Ecole des Mines, IRSID Company, Maizieresles-Metz, France
    167 schema:name the Ecole des Mines, IRSID Company, Maizieresles-Metz, France
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...