A new hot-tearing criterion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-02

AUTHORS

M. Rappaz, J. -M. Drezet, M. Gremaud

ABSTRACT

A new criterion for the appearance of hot tears in metallic alloys is proposed. Based upon a mass balance performed over the liquid and solid phases, it accounts for the tensile deformation of the solid skeleton perpendicular to the growing dendrites and for the induced interdendritic liquid feeding. This model introduces a critical deformation rate (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varepsilon _{p,\max } $$ \end{document}) beyond which cavitation, i.e., nucleation of a first void, occurs. As should be expected, this critical value is an increasing function of the thermal gradient and permeability and a decreasing function of the viscosity. The shrinkage contribution, which is also included in the model, is shown to be of the same order of magnitude as that associated with the tensile deformation of the solid skeleton. A hot-cracking sensitivity (HCS) index is then defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varepsilon _{_{p,\max } }^{ - 1} $$ \end{document}. When applied to a variable-concentration aluminum-copper alloy, this HCS criterion can reproduce the typical “Λ curves” previously deduced by Clyne and Davies on a phenomenological basis. The calculated values are in fairly good agreement with those obtained experimentally by Spittle and Cushway for a non-grain-refined alloy. A comparison of this criterion to hot cracks observed in ring-mold solidification tests indicates cavitation depression of a few kilo Pascal and tensile stresses in the coherent mushy zone of a few mega Pascal. These values are discussed in terms of those obtained by other means (coherency measurement, microporosity observation, and simulation). Even though this HCS criterion is based only upon the appearance of a first void and not on its propagation, it sets up for the first time a physically sound basis for the study of hot-crack formation. More... »

PAGES

449-455

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-999-0334-z

DOI

http://dx.doi.org/10.1007/s11661-999-0334-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026049786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drezet", 
        "givenName": "J. -M.", 
        "id": "sg:person.01212610757.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Calcom SA, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.433079.a", 
          "name": [
            "Calcom SA, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gremaud", 
        "givenName": "M.", 
        "id": "sg:person.015634370015.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634370015.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02664583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027480549", 
          "https://doi.org/10.1007/bf02664583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02679728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008901287", 
          "https://doi.org/10.1007/bf02679728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02671249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027974856", 
          "https://doi.org/10.1007/bf02671249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02659502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025257670", 
          "https://doi.org/10.1007/bf02659502"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-02", 
    "datePublishedReg": "1999-02-01", 
    "description": "A new criterion for the appearance of hot tears in metallic alloys is proposed. Based upon a mass balance performed over the liquid and solid phases, it accounts for the tensile deformation of the solid skeleton perpendicular to the growing dendrites and for the induced interdendritic liquid feeding. This model introduces a critical deformation rate (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot \\varepsilon _{p,\\max } $$\n\\end{document}) beyond which cavitation, i.e., nucleation of a first void, occurs. As should be expected, this critical value is an increasing function of the thermal gradient and permeability and a decreasing function of the viscosity. The shrinkage contribution, which is also included in the model, is shown to be of the same order of magnitude as that associated with the tensile deformation of the solid skeleton. A hot-cracking sensitivity (HCS) index is then defined as \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot \\varepsilon _{_{p,\\max } }^{ - 1} $$\n\\end{document}. When applied to a variable-concentration aluminum-copper alloy, this HCS criterion can reproduce the typical \u201c\u039b curves\u201d previously deduced by Clyne and Davies on a phenomenological basis. The calculated values are in fairly good agreement with those obtained experimentally by Spittle and Cushway for a non-grain-refined alloy. A comparison of this criterion to hot cracks observed in ring-mold solidification tests indicates cavitation depression of a few kilo Pascal and tensile stresses in the coherent mushy zone of a few mega Pascal. These values are discussed in terms of those obtained by other means (coherency measurement, microporosity observation, and simulation). Even though this HCS criterion is based only upon the appearance of a first void and not on its propagation, it sets up for the first time a physically sound basis for the study of hot-crack formation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-999-0334-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "tensile deformation", 
      "interdendritic liquid feeding", 
      "critical deformation rate", 
      "coherent mushy zone", 
      "hot crack formation", 
      "hot tearing criteria", 
      "aluminum-copper alloys", 
      "hot cracks", 
      "solid skeleton", 
      "hot tears", 
      "mushy zone", 
      "tensile stress", 
      "metallic alloys", 
      "deformation rate", 
      "solidification tests", 
      "thermal gradient", 
      "alloy", 
      "kilo Pascal", 
      "deformation", 
      "solid phase", 
      "good agreement", 
      "\u03bb curve", 
      "liquid feeding", 
      "mass balance", 
      "critical value", 
      "voids", 
      "cracks", 
      "same order", 
      "cavitation", 
      "phenomenological basis", 
      "nucleation", 
      "viscosity", 
      "propagation", 
      "permeability", 
      "perpendicular", 
      "new criterion", 
      "first time", 
      "model", 
      "sensitivity index", 
      "Clyne", 
      "gradient", 
      "values", 
      "phase", 
      "stress", 
      "zone", 
      "sound basis", 
      "agreement", 
      "magnitude", 
      "curves", 
      "order", 
      "test", 
      "mega", 
      "formation", 
      "criteria", 
      "comparison", 
      "terms", 
      "means", 
      "time", 
      "basis", 
      "dendrites", 
      "rate", 
      "balance", 
      "function", 
      "contribution", 
      "appearance", 
      "skeleton", 
      "study", 
      "Pascal", 
      "index", 
      "first void", 
      "Davies", 
      "spittle", 
      "tears", 
      "feeding", 
      "depression"
    ], 
    "name": "A new hot-tearing criterion", 
    "pagination": "449-455", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026049786"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-999-0334-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-999-0334-z", 
      "https://app.dimensions.ai/details/publication/pub.1026049786"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_335.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-999-0334-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0334-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0334-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0334-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0334-z'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      104 URIs      92 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-999-0334-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nac52e88802ae4cf0af567b2beb527e88
4 schema:citation sg:pub.10.1007/bf02659502
5 sg:pub.10.1007/bf02664583
6 sg:pub.10.1007/bf02671249
7 sg:pub.10.1007/bf02679728
8 schema:datePublished 1999-02
9 schema:datePublishedReg 1999-02-01
10 schema:description A new criterion for the appearance of hot tears in metallic alloys is proposed. Based upon a mass balance performed over the liquid and solid phases, it accounts for the tensile deformation of the solid skeleton perpendicular to the growing dendrites and for the induced interdendritic liquid feeding. This model introduces a critical deformation rate (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varepsilon _{p,\max } $$ \end{document}) beyond which cavitation, i.e., nucleation of a first void, occurs. As should be expected, this critical value is an increasing function of the thermal gradient and permeability and a decreasing function of the viscosity. The shrinkage contribution, which is also included in the model, is shown to be of the same order of magnitude as that associated with the tensile deformation of the solid skeleton. A hot-cracking sensitivity (HCS) index is then defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varepsilon _{_{p,\max } }^{ - 1} $$ \end{document}. When applied to a variable-concentration aluminum-copper alloy, this HCS criterion can reproduce the typical “Λ curves” previously deduced by Clyne and Davies on a phenomenological basis. The calculated values are in fairly good agreement with those obtained experimentally by Spittle and Cushway for a non-grain-refined alloy. A comparison of this criterion to hot cracks observed in ring-mold solidification tests indicates cavitation depression of a few kilo Pascal and tensile stresses in the coherent mushy zone of a few mega Pascal. These values are discussed in terms of those obtained by other means (coherency measurement, microporosity observation, and simulation). Even though this HCS criterion is based only upon the appearance of a first void and not on its propagation, it sets up for the first time a physically sound basis for the study of hot-crack formation.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N96a63d92bd9d4ee291b87cc28d7e6228
14 Ne623371e0fe34b9a83f3dec19c6e3294
15 sg:journal.1136292
16 schema:keywords Clyne
17 Davies
18 Pascal
19 agreement
20 alloy
21 aluminum-copper alloys
22 appearance
23 balance
24 basis
25 cavitation
26 coherent mushy zone
27 comparison
28 contribution
29 cracks
30 criteria
31 critical deformation rate
32 critical value
33 curves
34 deformation
35 deformation rate
36 dendrites
37 depression
38 feeding
39 first time
40 first void
41 formation
42 function
43 good agreement
44 gradient
45 hot crack formation
46 hot cracks
47 hot tearing criteria
48 hot tears
49 index
50 interdendritic liquid feeding
51 kilo Pascal
52 liquid feeding
53 magnitude
54 mass balance
55 means
56 mega
57 metallic alloys
58 model
59 mushy zone
60 new criterion
61 nucleation
62 order
63 permeability
64 perpendicular
65 phase
66 phenomenological basis
67 propagation
68 rate
69 same order
70 sensitivity index
71 skeleton
72 solid phase
73 solid skeleton
74 solidification tests
75 sound basis
76 spittle
77 stress
78 study
79 tears
80 tensile deformation
81 tensile stress
82 terms
83 test
84 thermal gradient
85 time
86 values
87 viscosity
88 voids
89 zone
90 λ curve
91 schema:name A new hot-tearing criterion
92 schema:pagination 449-455
93 schema:productId N8f6d56955c414dbba804597f8f676b7f
94 Nb11865b866b149a087a6f44690ae927b
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049786
96 https://doi.org/10.1007/s11661-999-0334-z
97 schema:sdDatePublished 2022-11-24T20:49
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N704c4e2723e44b9fbdc83bcc7177135c
100 schema:url https://doi.org/10.1007/s11661-999-0334-z
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N704c4e2723e44b9fbdc83bcc7177135c schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N8dd570616f4c41f0a626eda7c5e1eec5 rdf:first sg:person.01212610757.30
107 rdf:rest Ndc0225b2635c496aad9dd926ca0d8c58
108 N8f6d56955c414dbba804597f8f676b7f schema:name doi
109 schema:value 10.1007/s11661-999-0334-z
110 rdf:type schema:PropertyValue
111 N96a63d92bd9d4ee291b87cc28d7e6228 schema:issueNumber 2
112 rdf:type schema:PublicationIssue
113 Nac52e88802ae4cf0af567b2beb527e88 rdf:first sg:person.013657516157.10
114 rdf:rest N8dd570616f4c41f0a626eda7c5e1eec5
115 Nb11865b866b149a087a6f44690ae927b schema:name dimensions_id
116 schema:value pub.1026049786
117 rdf:type schema:PropertyValue
118 Ndc0225b2635c496aad9dd926ca0d8c58 rdf:first sg:person.015634370015.93
119 rdf:rest rdf:nil
120 Ne623371e0fe34b9a83f3dec19c6e3294 schema:volumeNumber 30
121 rdf:type schema:PublicationVolume
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
126 schema:name Materials Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1136292 schema:issn 1073-5623
129 1543-1940
130 schema:name Metallurgical and Materials Transactions A
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.01212610757.30 schema:affiliation grid-institutes:grid.5333.6
134 schema:familyName Drezet
135 schema:givenName J. -M.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30
137 rdf:type schema:Person
138 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
139 schema:familyName Rappaz
140 schema:givenName M.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
142 rdf:type schema:Person
143 sg:person.015634370015.93 schema:affiliation grid-institutes:grid.433079.a
144 schema:familyName Gremaud
145 schema:givenName M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634370015.93
147 rdf:type schema:Person
148 sg:pub.10.1007/bf02659502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025257670
149 https://doi.org/10.1007/bf02659502
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf02664583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027480549
152 https://doi.org/10.1007/bf02664583
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf02671249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027974856
155 https://doi.org/10.1007/bf02671249
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf02679728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008901287
158 https://doi.org/10.1007/bf02679728
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.433079.a schema:alternateName Calcom SA, CH-1015, Lausanne, Switzerland
161 schema:name Calcom SA, CH-1015, Lausanne, Switzerland
162 rdf:type schema:Organization
163 grid-institutes:grid.5333.6 schema:alternateName the Laboratoire de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
164 schema:name the Laboratoire de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...