Dendritic Growth tip velocities and radii of curvature in microgravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

M. B. Koss, J. C. LaCombe, L. A. Tennenhouse, M. E. Glicksman, E. A. Winsa

ABSTRACT

Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 × 10−6g0. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated by convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification required some modification. Finally, the kinetic selection role for dendritic growth, VR2=constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling. More... »

PAGES

3177-3190

References to SciGraph publications

  • 1988-08. Isothermal dendritic growth— a proposed microgravity experiment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1976-11. Dendritic growth-A test of theory in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1995-08. The chronology of a microgravity spaoeflight experiment: IDGE in JOM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0

    DOI

    http://dx.doi.org/10.1007/s11661-999-0228-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039839983


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koss", 
            "givenName": "M. B.", 
            "id": "sg:person.013371002302.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LaCombe", 
            "givenName": "J. C.", 
            "id": "sg:person.014003067732.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tennenhouse", 
            "givenName": "L. A.", 
            "id": "sg:person.013656053747.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656053747.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glicksman", 
            "givenName": "M. E.", 
            "id": "sg:person.010720014261.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH", 
              "id": "http://www.grid.ac/institutes/grid.419077.c", 
              "name": [
                "the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Winsa", 
            "givenName": "E. A.", 
            "id": "sg:person.011404402162.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404402162.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02645198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031518593", 
              "https://doi.org/10.1007/bf02645198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03186673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005150977", 
              "https://doi.org/10.1007/bf03186673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03221460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048864803", 
              "https://doi.org/10.1007/bf03221460"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 \u00d7 10\u22126g0. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated by convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification required some modification. Finally, the kinetic selection role for dendritic growth, VR2=constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-999-0228-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "Isothermal Dendritic Growth Experiment", 
          "dendritic growth theories", 
          "radius of curvature", 
          "buoyancy-induced convection", 
          "dendritic growth", 
          "low thermal gradients", 
          "quasi-static acceleration", 
          "latent heat", 
          "Peclet number", 
          "dendritic solidification", 
          "gravity environment", 
          "tip velocity", 
          "growth of dendrites", 
          "interfacial energy", 
          "thermal gradient", 
          "microgravity conditions", 
          "crystal-melt interface", 
          "convection", 
          "solidification", 
          "experimental data", 
          "velocity", 
          "succinonitrile", 
          "supercooling", 
          "first flight", 
          "terrestrial conditions", 
          "transport theory", 
          "slight dependence", 
          "pure melt", 
          "microgravity", 
          "tip", 
          "heat", 
          "radius", 
          "curvature", 
          "interface", 
          "growth experiments", 
          "common mode", 
          "metals", 
          "conditions", 
          "diffusion", 
          "melt", 
          "energy", 
          "acceleration", 
          "flight", 
          "growth theory", 
          "mode", 
          "measurements", 
          "gradient", 
          "transport", 
          "radius data", 
          "influence", 
          "dependence", 
          "experiments", 
          "theory", 
          "test", 
          "selection role", 
          "growth", 
          "modest disagreement", 
          "modification", 
          "environment", 
          "effect", 
          "dendrites", 
          "data", 
          "weak effect", 
          "critical test", 
          "number", 
          "VR2", 
          "contrast", 
          "days", 
          "role", 
          "disagreement"
        ], 
        "name": "Dendritic Growth tip velocities and radii of curvature in microgravity", 
        "pagination": "3177-3190", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039839983"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-999-0228-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-999-0228-0", 
          "https://app.dimensions.ai/details/publication/pub.1039839983"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_338.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-999-0228-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      98 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-999-0228-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N8a527e4bddc74ec88e496f771e5ac5e5
    4 schema:citation sg:pub.10.1007/bf02645198
    5 sg:pub.10.1007/bf03186673
    6 sg:pub.10.1007/bf03221460
    7 schema:datePublished 1999-12
    8 schema:datePublishedReg 1999-12-01
    9 schema:description Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 × 10−6g0. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated by convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification required some modification. Finally, the kinetic selection role for dendritic growth, VR2=constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N1541167091114606b4c2cac182ba40be
    13 Nd15043ba6523480394e3fd4d63cb1189
    14 sg:journal.1136292
    15 schema:keywords Isothermal Dendritic Growth Experiment
    16 Peclet number
    17 VR2
    18 acceleration
    19 buoyancy-induced convection
    20 common mode
    21 conditions
    22 contrast
    23 convection
    24 critical test
    25 crystal-melt interface
    26 curvature
    27 data
    28 days
    29 dendrites
    30 dendritic growth
    31 dendritic growth theories
    32 dendritic solidification
    33 dependence
    34 diffusion
    35 disagreement
    36 effect
    37 energy
    38 environment
    39 experimental data
    40 experiments
    41 first flight
    42 flight
    43 gradient
    44 gravity environment
    45 growth
    46 growth experiments
    47 growth of dendrites
    48 growth theory
    49 heat
    50 influence
    51 interface
    52 interfacial energy
    53 latent heat
    54 low thermal gradients
    55 measurements
    56 melt
    57 metals
    58 microgravity
    59 microgravity conditions
    60 mode
    61 modest disagreement
    62 modification
    63 number
    64 pure melt
    65 quasi-static acceleration
    66 radius
    67 radius data
    68 radius of curvature
    69 role
    70 selection role
    71 slight dependence
    72 solidification
    73 succinonitrile
    74 supercooling
    75 terrestrial conditions
    76 test
    77 theory
    78 thermal gradient
    79 tip
    80 tip velocity
    81 transport
    82 transport theory
    83 velocity
    84 weak effect
    85 schema:name Dendritic Growth tip velocities and radii of curvature in microgravity
    86 schema:pagination 3177-3190
    87 schema:productId N20a8748701e34273b2e214aecd74536c
    88 Nc1255597f2d943059f1340916c46d8a0
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039839983
    90 https://doi.org/10.1007/s11661-999-0228-0
    91 schema:sdDatePublished 2022-08-04T16:53
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N301bfcba4d0740999eec6185c38b3706
    94 schema:url https://doi.org/10.1007/s11661-999-0228-0
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N0e7818181ed648cd94a7d5944c49ec4b rdf:first sg:person.011404402162.26
    99 rdf:rest rdf:nil
    100 N1541167091114606b4c2cac182ba40be schema:volumeNumber 30
    101 rdf:type schema:PublicationVolume
    102 N20a8748701e34273b2e214aecd74536c schema:name doi
    103 schema:value 10.1007/s11661-999-0228-0
    104 rdf:type schema:PropertyValue
    105 N301bfcba4d0740999eec6185c38b3706 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 N62bed315fd2b43f8a857946434e1fec5 rdf:first sg:person.013656053747.31
    108 rdf:rest N7a9e6bb68ce547e0964546f43e3394b6
    109 N69c5d5a0851d4fa89d97872db9179718 rdf:first sg:person.014003067732.41
    110 rdf:rest N62bed315fd2b43f8a857946434e1fec5
    111 N7a9e6bb68ce547e0964546f43e3394b6 rdf:first sg:person.010720014261.43
    112 rdf:rest N0e7818181ed648cd94a7d5944c49ec4b
    113 N8a527e4bddc74ec88e496f771e5ac5e5 rdf:first sg:person.013371002302.98
    114 rdf:rest N69c5d5a0851d4fa89d97872db9179718
    115 Nc1255597f2d943059f1340916c46d8a0 schema:name dimensions_id
    116 schema:value pub.1039839983
    117 rdf:type schema:PropertyValue
    118 Nd15043ba6523480394e3fd4d63cb1189 schema:issueNumber 12
    119 rdf:type schema:PublicationIssue
    120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Engineering
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Materials Engineering
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1136292 schema:issn 1073-5623
    127 1543-1940
    128 schema:name Metallurgical and Materials Transactions A
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.33647.35
    132 schema:familyName Glicksman
    133 schema:givenName M. E.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
    135 rdf:type schema:Person
    136 sg:person.011404402162.26 schema:affiliation grid-institutes:grid.419077.c
    137 schema:familyName Winsa
    138 schema:givenName E. A.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404402162.26
    140 rdf:type schema:Person
    141 sg:person.013371002302.98 schema:affiliation grid-institutes:grid.33647.35
    142 schema:familyName Koss
    143 schema:givenName M. B.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98
    145 rdf:type schema:Person
    146 sg:person.013656053747.31 schema:affiliation grid-institutes:grid.33647.35
    147 schema:familyName Tennenhouse
    148 schema:givenName L. A.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656053747.31
    150 rdf:type schema:Person
    151 sg:person.014003067732.41 schema:affiliation grid-institutes:grid.33647.35
    152 schema:familyName LaCombe
    153 schema:givenName J. C.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41
    155 rdf:type schema:Person
    156 sg:pub.10.1007/bf02645198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031518593
    157 https://doi.org/10.1007/bf02645198
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf03186673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005150977
    160 https://doi.org/10.1007/bf03186673
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf03221460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048864803
    163 https://doi.org/10.1007/bf03221460
    164 rdf:type schema:CreativeWork
    165 grid-institutes:grid.33647.35 schema:alternateName the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY
    166 schema:name the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY
    167 rdf:type schema:Organization
    168 grid-institutes:grid.419077.c schema:alternateName the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH
    169 schema:name the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...