Ontology type: schema:ScholarlyArticle
1999-12
AUTHORSM. B. Koss, J. C. LaCombe, L. A. Tennenhouse, M. E. Glicksman, E. A. Winsa
ABSTRACTDendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 × 10−6g0. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated by convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification required some modification. Finally, the kinetic selection role for dendritic growth, VR2=constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling. More... »
PAGES3177-3190
http://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0
DOIhttp://dx.doi.org/10.1007/s11661-999-0228-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039839983
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Koss",
"givenName": "M. B.",
"id": "sg:person.013371002302.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "LaCombe",
"givenName": "J. C.",
"id": "sg:person.014003067732.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Tennenhouse",
"givenName": "L. A.",
"id": "sg:person.013656053747.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656053747.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Glicksman",
"givenName": "M. E.",
"id": "sg:person.010720014261.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH",
"id": "http://www.grid.ac/institutes/grid.419077.c",
"name": [
"the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH"
],
"type": "Organization"
},
"familyName": "Winsa",
"givenName": "E. A.",
"id": "sg:person.011404402162.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404402162.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02645198",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031518593",
"https://doi.org/10.1007/bf02645198"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03186673",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005150977",
"https://doi.org/10.1007/bf03186673"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03221460",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048864803",
"https://doi.org/10.1007/bf03221460"
],
"type": "CreativeWork"
}
],
"datePublished": "1999-12",
"datePublishedReg": "1999-12-01",
"description": "Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 \u00d7 10\u22126g0. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated by convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification required some modification. Finally, the kinetic selection role for dendritic growth, VR2=constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling.",
"genre": "article",
"id": "sg:pub.10.1007/s11661-999-0228-0",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "30"
}
],
"keywords": [
"Isothermal Dendritic Growth Experiment",
"dendritic growth theories",
"radius of curvature",
"buoyancy-induced convection",
"dendritic growth",
"low thermal gradients",
"quasi-static acceleration",
"latent heat",
"Peclet number",
"dendritic solidification",
"gravity environment",
"tip velocity",
"growth of dendrites",
"interfacial energy",
"thermal gradient",
"microgravity conditions",
"crystal-melt interface",
"convection",
"solidification",
"experimental data",
"velocity",
"succinonitrile",
"supercooling",
"first flight",
"terrestrial conditions",
"transport theory",
"slight dependence",
"pure melt",
"microgravity",
"tip",
"heat",
"radius",
"curvature",
"interface",
"growth experiments",
"common mode",
"metals",
"conditions",
"diffusion",
"melt",
"energy",
"acceleration",
"flight",
"growth theory",
"mode",
"measurements",
"gradient",
"transport",
"radius data",
"influence",
"dependence",
"experiments",
"theory",
"test",
"selection role",
"growth",
"modest disagreement",
"modification",
"environment",
"effect",
"dendrites",
"data",
"weak effect",
"critical test",
"number",
"VR2",
"contrast",
"days",
"role",
"disagreement"
],
"name": "Dendritic Growth tip velocities and radii of curvature in microgravity",
"pagination": "3177-3190",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039839983"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11661-999-0228-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11661-999-0228-0",
"https://app.dimensions.ai/details/publication/pub.1039839983"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_338.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11661-999-0228-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0228-0'
This table displays all metadata directly associated to this object as RDF triples.
170 TRIPLES
21 PREDICATES
98 URIs
87 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11661-999-0228-0 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N8a527e4bddc74ec88e496f771e5ac5e5 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02645198 |
5 | ″ | ″ | sg:pub.10.1007/bf03186673 |
6 | ″ | ″ | sg:pub.10.1007/bf03221460 |
7 | ″ | schema:datePublished | 1999-12 |
8 | ″ | schema:datePublishedReg | 1999-12-01 |
9 | ″ | schema:description | Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 × 10−6g0. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated by convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification required some modification. Finally, the kinetic selection role for dendritic growth, VR2=constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N1541167091114606b4c2cac182ba40be |
13 | ″ | ″ | Nd15043ba6523480394e3fd4d63cb1189 |
14 | ″ | ″ | sg:journal.1136292 |
15 | ″ | schema:keywords | Isothermal Dendritic Growth Experiment |
16 | ″ | ″ | Peclet number |
17 | ″ | ″ | VR2 |
18 | ″ | ″ | acceleration |
19 | ″ | ″ | buoyancy-induced convection |
20 | ″ | ″ | common mode |
21 | ″ | ″ | conditions |
22 | ″ | ″ | contrast |
23 | ″ | ″ | convection |
24 | ″ | ″ | critical test |
25 | ″ | ″ | crystal-melt interface |
26 | ″ | ″ | curvature |
27 | ″ | ″ | data |
28 | ″ | ″ | days |
29 | ″ | ″ | dendrites |
30 | ″ | ″ | dendritic growth |
31 | ″ | ″ | dendritic growth theories |
32 | ″ | ″ | dendritic solidification |
33 | ″ | ″ | dependence |
34 | ″ | ″ | diffusion |
35 | ″ | ″ | disagreement |
36 | ″ | ″ | effect |
37 | ″ | ″ | energy |
38 | ″ | ″ | environment |
39 | ″ | ″ | experimental data |
40 | ″ | ″ | experiments |
41 | ″ | ″ | first flight |
42 | ″ | ″ | flight |
43 | ″ | ″ | gradient |
44 | ″ | ″ | gravity environment |
45 | ″ | ″ | growth |
46 | ″ | ″ | growth experiments |
47 | ″ | ″ | growth of dendrites |
48 | ″ | ″ | growth theory |
49 | ″ | ″ | heat |
50 | ″ | ″ | influence |
51 | ″ | ″ | interface |
52 | ″ | ″ | interfacial energy |
53 | ″ | ″ | latent heat |
54 | ″ | ″ | low thermal gradients |
55 | ″ | ″ | measurements |
56 | ″ | ″ | melt |
57 | ″ | ″ | metals |
58 | ″ | ″ | microgravity |
59 | ″ | ″ | microgravity conditions |
60 | ″ | ″ | mode |
61 | ″ | ″ | modest disagreement |
62 | ″ | ″ | modification |
63 | ″ | ″ | number |
64 | ″ | ″ | pure melt |
65 | ″ | ″ | quasi-static acceleration |
66 | ″ | ″ | radius |
67 | ″ | ″ | radius data |
68 | ″ | ″ | radius of curvature |
69 | ″ | ″ | role |
70 | ″ | ″ | selection role |
71 | ″ | ″ | slight dependence |
72 | ″ | ″ | solidification |
73 | ″ | ″ | succinonitrile |
74 | ″ | ″ | supercooling |
75 | ″ | ″ | terrestrial conditions |
76 | ″ | ″ | test |
77 | ″ | ″ | theory |
78 | ″ | ″ | thermal gradient |
79 | ″ | ″ | tip |
80 | ″ | ″ | tip velocity |
81 | ″ | ″ | transport |
82 | ″ | ″ | transport theory |
83 | ″ | ″ | velocity |
84 | ″ | ″ | weak effect |
85 | ″ | schema:name | Dendritic Growth tip velocities and radii of curvature in microgravity |
86 | ″ | schema:pagination | 3177-3190 |
87 | ″ | schema:productId | N20a8748701e34273b2e214aecd74536c |
88 | ″ | ″ | Nc1255597f2d943059f1340916c46d8a0 |
89 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039839983 |
90 | ″ | ″ | https://doi.org/10.1007/s11661-999-0228-0 |
91 | ″ | schema:sdDatePublished | 2022-08-04T16:53 |
92 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
93 | ″ | schema:sdPublisher | N301bfcba4d0740999eec6185c38b3706 |
94 | ″ | schema:url | https://doi.org/10.1007/s11661-999-0228-0 |
95 | ″ | sgo:license | sg:explorer/license/ |
96 | ″ | sgo:sdDataset | articles |
97 | ″ | rdf:type | schema:ScholarlyArticle |
98 | N0e7818181ed648cd94a7d5944c49ec4b | rdf:first | sg:person.011404402162.26 |
99 | ″ | rdf:rest | rdf:nil |
100 | N1541167091114606b4c2cac182ba40be | schema:volumeNumber | 30 |
101 | ″ | rdf:type | schema:PublicationVolume |
102 | N20a8748701e34273b2e214aecd74536c | schema:name | doi |
103 | ″ | schema:value | 10.1007/s11661-999-0228-0 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N301bfcba4d0740999eec6185c38b3706 | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | N62bed315fd2b43f8a857946434e1fec5 | rdf:first | sg:person.013656053747.31 |
108 | ″ | rdf:rest | N7a9e6bb68ce547e0964546f43e3394b6 |
109 | N69c5d5a0851d4fa89d97872db9179718 | rdf:first | sg:person.014003067732.41 |
110 | ″ | rdf:rest | N62bed315fd2b43f8a857946434e1fec5 |
111 | N7a9e6bb68ce547e0964546f43e3394b6 | rdf:first | sg:person.010720014261.43 |
112 | ″ | rdf:rest | N0e7818181ed648cd94a7d5944c49ec4b |
113 | N8a527e4bddc74ec88e496f771e5ac5e5 | rdf:first | sg:person.013371002302.98 |
114 | ″ | rdf:rest | N69c5d5a0851d4fa89d97872db9179718 |
115 | Nc1255597f2d943059f1340916c46d8a0 | schema:name | dimensions_id |
116 | ″ | schema:value | pub.1039839983 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | Nd15043ba6523480394e3fd4d63cb1189 | schema:issueNumber | 12 |
119 | ″ | rdf:type | schema:PublicationIssue |
120 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Engineering |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Materials Engineering |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | sg:journal.1136292 | schema:issn | 1073-5623 |
127 | ″ | ″ | 1543-1940 |
128 | ″ | schema:name | Metallurgical and Materials Transactions A |
129 | ″ | schema:publisher | Springer Nature |
130 | ″ | rdf:type | schema:Periodical |
131 | sg:person.010720014261.43 | schema:affiliation | grid-institutes:grid.33647.35 |
132 | ″ | schema:familyName | Glicksman |
133 | ″ | schema:givenName | M. E. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.011404402162.26 | schema:affiliation | grid-institutes:grid.419077.c |
137 | ″ | schema:familyName | Winsa |
138 | ″ | schema:givenName | E. A. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404402162.26 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.013371002302.98 | schema:affiliation | grid-institutes:grid.33647.35 |
142 | ″ | schema:familyName | Koss |
143 | ″ | schema:givenName | M. B. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.013656053747.31 | schema:affiliation | grid-institutes:grid.33647.35 |
147 | ″ | schema:familyName | Tennenhouse |
148 | ″ | schema:givenName | L. A. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656053747.31 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.014003067732.41 | schema:affiliation | grid-institutes:grid.33647.35 |
152 | ″ | schema:familyName | LaCombe |
153 | ″ | schema:givenName | J. C. |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41 |
155 | ″ | rdf:type | schema:Person |
156 | sg:pub.10.1007/bf02645198 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031518593 |
157 | ″ | ″ | https://doi.org/10.1007/bf02645198 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/bf03186673 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005150977 |
160 | ″ | ″ | https://doi.org/10.1007/bf03186673 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | sg:pub.10.1007/bf03221460 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048864803 |
163 | ″ | ″ | https://doi.org/10.1007/bf03221460 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | grid-institutes:grid.33647.35 | schema:alternateName | the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY |
166 | ″ | schema:name | the Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, NY |
167 | ″ | rdf:type | schema:Organization |
168 | grid-institutes:grid.419077.c | schema:alternateName | the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH |
169 | ″ | schema:name | the Fluids and Combustion Facility, Microgravity Science Division, NASA-Glenn Research Center at Lewis Field, 44135, Cleveland, OH |
170 | ″ | rdf:type | schema:Organization |