Ontology type: schema:ScholarlyArticle
1999-12
AUTHORS ABSTRACTA method for the optimization of a phase diagram on the basis of results from directional solidification experiments is proposed. The experimental microstructure selection map is compared with a calculated map and the input parameters are varied until a satisfactory agreement is obtained. The calculation of the microstructure selection map is based on the maximum temperature criterion and on analytical models for the growth of plane front, dendritic, and eutectic structures. This method is applied to the Ni-Al system where the phase equilibria close to the melting point of the γ′-Ni3Al phase have been subject to discussion for over 50 years. A new version of this part of the phase diagram is proposed, which is coherent with the results from directional solidification experiments. More... »
PAGES3167-3175
http://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1
DOIhttp://dx.doi.org/10.1007/s11661-999-0227-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012067903
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom",
"id": "http://www.grid.ac/institutes/grid.5335.0",
"name": [
"the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom"
],
"type": "Organization"
},
"familyName": "Hunziker",
"givenName": "O.",
"id": "sg:person.016642161765.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642161765.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5333.6",
"name": [
"the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland"
],
"type": "Organization"
},
"familyName": "Kurz",
"givenName": "W.",
"id": "sg:person.010017145423.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02647608",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049272385",
"https://doi.org/10.1007/bf02647608"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02698258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010054991",
"https://doi.org/10.1007/bf02698258"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02663666",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014443916",
"https://doi.org/10.1007/bf02663666"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02646356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026043254",
"https://doi.org/10.1007/bf02646356"
],
"type": "CreativeWork"
}
],
"datePublished": "1999-12",
"datePublishedReg": "1999-12-01",
"description": "A method for the optimization of a phase diagram on the basis of results from directional solidification experiments is proposed. The experimental microstructure selection map is compared with a calculated map and the input parameters are varied until a satisfactory agreement is obtained. The calculation of the microstructure selection map is based on the maximum temperature criterion and on analytical models for the growth of plane front, dendritic, and eutectic structures. This method is applied to the Ni-Al system where the phase equilibria close to the melting point of the \u03b3\u2032-Ni3Al phase have been subject to discussion for over 50 years. A new version of this part of the phase diagram is proposed, which is coherent with the results from directional solidification experiments.",
"genre": "article",
"id": "sg:pub.10.1007/s11661-999-0227-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "30"
}
],
"keywords": [
"microstructure selection map",
"directional solidification experiments",
"Ni-Al system",
"solidification experiments",
"selection map",
"\u03b3\u2032-Ni3Al phase",
"eutectic structure",
"directional solidification",
"maximum temperature criterion",
"analytical model",
"plane front",
"temperature criterion",
"input parameters",
"melting point",
"phase diagram",
"satisfactory agreement",
"phase equilibria",
"solidification",
"phase",
"diagram",
"optimization",
"basis of results",
"system",
"method",
"experiments",
"front",
"parameters",
"maps",
"results",
"agreement",
"calculations",
"structure",
"new version",
"model",
"point",
"equilibrium",
"part",
"growth",
"basis",
"criteria",
"version",
"discussion",
"years"
],
"name": "Directional solidification and phase equilibria in the Ni-Al system",
"pagination": "3167-3175",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012067903"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11661-999-0227-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11661-999-0227-1",
"https://app.dimensions.ai/details/publication/pub.1012067903"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_320.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11661-999-0227-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
22 PREDICATES
73 URIs
61 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11661-999-0227-1 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N1245a55849e644e0b319cf655e98e027 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02646356 |
5 | ″ | ″ | sg:pub.10.1007/bf02647608 |
6 | ″ | ″ | sg:pub.10.1007/bf02663666 |
7 | ″ | ″ | sg:pub.10.1007/bf02698258 |
8 | ″ | schema:datePublished | 1999-12 |
9 | ″ | schema:datePublishedReg | 1999-12-01 |
10 | ″ | schema:description | A method for the optimization of a phase diagram on the basis of results from directional solidification experiments is proposed. The experimental microstructure selection map is compared with a calculated map and the input parameters are varied until a satisfactory agreement is obtained. The calculation of the microstructure selection map is based on the maximum temperature criterion and on analytical models for the growth of plane front, dendritic, and eutectic structures. This method is applied to the Ni-Al system where the phase equilibria close to the melting point of the γ′-Ni3Al phase have been subject to discussion for over 50 years. A new version of this part of the phase diagram is proposed, which is coherent with the results from directional solidification experiments. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N81f1e51e93234729a57d63676d8eced9 |
15 | ″ | ″ | Nd09646630aa3453f91fe8d5d3821e029 |
16 | ″ | ″ | sg:journal.1136292 |
17 | ″ | schema:keywords | Ni-Al system |
18 | ″ | ″ | agreement |
19 | ″ | ″ | analytical model |
20 | ″ | ″ | basis |
21 | ″ | ″ | basis of results |
22 | ″ | ″ | calculations |
23 | ″ | ″ | criteria |
24 | ″ | ″ | diagram |
25 | ″ | ″ | directional solidification |
26 | ″ | ″ | directional solidification experiments |
27 | ″ | ″ | discussion |
28 | ″ | ″ | equilibrium |
29 | ″ | ″ | eutectic structure |
30 | ″ | ″ | experiments |
31 | ″ | ″ | front |
32 | ″ | ″ | growth |
33 | ″ | ″ | input parameters |
34 | ″ | ″ | maps |
35 | ″ | ″ | maximum temperature criterion |
36 | ″ | ″ | melting point |
37 | ″ | ″ | method |
38 | ″ | ″ | microstructure selection map |
39 | ″ | ″ | model |
40 | ″ | ″ | new version |
41 | ″ | ″ | optimization |
42 | ″ | ″ | parameters |
43 | ″ | ″ | part |
44 | ″ | ″ | phase |
45 | ″ | ″ | phase diagram |
46 | ″ | ″ | phase equilibria |
47 | ″ | ″ | plane front |
48 | ″ | ″ | point |
49 | ″ | ″ | results |
50 | ″ | ″ | satisfactory agreement |
51 | ″ | ″ | selection map |
52 | ″ | ″ | solidification |
53 | ″ | ″ | solidification experiments |
54 | ″ | ″ | structure |
55 | ″ | ″ | system |
56 | ″ | ″ | temperature criterion |
57 | ″ | ″ | version |
58 | ″ | ″ | years |
59 | ″ | ″ | γ′-Ni3Al phase |
60 | ″ | schema:name | Directional solidification and phase equilibria in the Ni-Al system |
61 | ″ | schema:pagination | 3167-3175 |
62 | ″ | schema:productId | N5e883d24d63f4e97b8b7491d88aaa46e |
63 | ″ | ″ | Nb5cc62c062214bbfa86902f5088df584 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012067903 |
65 | ″ | ″ | https://doi.org/10.1007/s11661-999-0227-1 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N6b99bdf924a74293b085cc229c16479b |
69 | ″ | schema:url | https://doi.org/10.1007/s11661-999-0227-1 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | articles |
72 | ″ | rdf:type | schema:ScholarlyArticle |
73 | N1245a55849e644e0b319cf655e98e027 | rdf:first | sg:person.016642161765.41 |
74 | ″ | rdf:rest | Nc0fc8d503b1d41feb2693c36fca2899a |
75 | N5e883d24d63f4e97b8b7491d88aaa46e | schema:name | doi |
76 | ″ | schema:value | 10.1007/s11661-999-0227-1 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N6b99bdf924a74293b085cc229c16479b | schema:name | Springer Nature - SN SciGraph project |
79 | ″ | rdf:type | schema:Organization |
80 | N81f1e51e93234729a57d63676d8eced9 | schema:volumeNumber | 30 |
81 | ″ | rdf:type | schema:PublicationVolume |
82 | Nb5cc62c062214bbfa86902f5088df584 | schema:name | dimensions_id |
83 | ″ | schema:value | pub.1012067903 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | Nc0fc8d503b1d41feb2693c36fca2899a | rdf:first | sg:person.010017145423.41 |
86 | ″ | rdf:rest | rdf:nil |
87 | Nd09646630aa3453f91fe8d5d3821e029 | schema:issueNumber | 12 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Engineering |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Materials Engineering |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | sg:journal.1136292 | schema:issn | 1073-5623 |
96 | ″ | ″ | 1543-1940 |
97 | ″ | schema:name | Metallurgical and Materials Transactions A |
98 | ″ | schema:publisher | Springer Nature |
99 | ″ | rdf:type | schema:Periodical |
100 | sg:person.010017145423.41 | schema:affiliation | grid-institutes:grid.5333.6 |
101 | ″ | schema:familyName | Kurz |
102 | ″ | schema:givenName | W. |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41 |
104 | ″ | rdf:type | schema:Person |
105 | sg:person.016642161765.41 | schema:affiliation | grid-institutes:grid.5335.0 |
106 | ″ | schema:familyName | Hunziker |
107 | ″ | schema:givenName | O. |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642161765.41 |
109 | ″ | rdf:type | schema:Person |
110 | sg:pub.10.1007/bf02646356 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026043254 |
111 | ″ | ″ | https://doi.org/10.1007/bf02646356 |
112 | ″ | rdf:type | schema:CreativeWork |
113 | sg:pub.10.1007/bf02647608 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049272385 |
114 | ″ | ″ | https://doi.org/10.1007/bf02647608 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | sg:pub.10.1007/bf02663666 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014443916 |
117 | ″ | ″ | https://doi.org/10.1007/bf02663666 |
118 | ″ | rdf:type | schema:CreativeWork |
119 | sg:pub.10.1007/bf02698258 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010054991 |
120 | ″ | ″ | https://doi.org/10.1007/bf02698258 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | grid-institutes:grid.5333.6 | schema:alternateName | the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland |
123 | ″ | schema:name | the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.5335.0 | schema:alternateName | the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom |
126 | ″ | schema:name | the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom |
127 | ″ | rdf:type | schema:Organization |