Directional solidification and phase equilibria in the Ni-Al system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

O. Hunziker, W. Kurz

ABSTRACT

A method for the optimization of a phase diagram on the basis of results from directional solidification experiments is proposed. The experimental microstructure selection map is compared with a calculated map and the input parameters are varied until a satisfactory agreement is obtained. The calculation of the microstructure selection map is based on the maximum temperature criterion and on analytical models for the growth of plane front, dendritic, and eutectic structures. This method is applied to the Ni-Al system where the phase equilibria close to the melting point of the γ′-Ni3Al phase have been subject to discussion for over 50 years. A new version of this part of the phase diagram is proposed, which is coherent with the results from directional solidification experiments. More... »

PAGES

3167-3175

References to SciGraph publications

  • 1994-04. Metastable eutectic formation in Ni- Al alloys in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1995-06. Theory of layered-structure formation in peritectic systems in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1990-05. Modeling of solidification microstructures in concentrated solutions and intermetallic systems in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-02. The phase equilibria of N3Al evaluated by directional solidification and diffusion couple experiments in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1

    DOI

    http://dx.doi.org/10.1007/s11661-999-0227-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012067903


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hunziker", 
            "givenName": "O.", 
            "id": "sg:person.016642161765.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642161765.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "W.", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02647608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049272385", 
              "https://doi.org/10.1007/bf02647608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02698258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010054991", 
              "https://doi.org/10.1007/bf02698258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02663666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014443916", 
              "https://doi.org/10.1007/bf02663666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02646356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026043254", 
              "https://doi.org/10.1007/bf02646356"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "A method for the optimization of a phase diagram on the basis of results from directional solidification experiments is proposed. The experimental microstructure selection map is compared with a calculated map and the input parameters are varied until a satisfactory agreement is obtained. The calculation of the microstructure selection map is based on the maximum temperature criterion and on analytical models for the growth of plane front, dendritic, and eutectic structures. This method is applied to the Ni-Al system where the phase equilibria close to the melting point of the \u03b3\u2032-Ni3Al phase have been subject to discussion for over 50 years. A new version of this part of the phase diagram is proposed, which is coherent with the results from directional solidification experiments.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-999-0227-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "microstructure selection map", 
          "directional solidification experiments", 
          "Ni-Al system", 
          "solidification experiments", 
          "selection map", 
          "\u03b3\u2032-Ni3Al phase", 
          "eutectic structure", 
          "directional solidification", 
          "maximum temperature criterion", 
          "analytical model", 
          "plane front", 
          "temperature criterion", 
          "input parameters", 
          "melting point", 
          "phase diagram", 
          "satisfactory agreement", 
          "phase equilibria", 
          "solidification", 
          "phase", 
          "diagram", 
          "optimization", 
          "basis of results", 
          "system", 
          "method", 
          "experiments", 
          "front", 
          "parameters", 
          "maps", 
          "results", 
          "agreement", 
          "calculations", 
          "structure", 
          "new version", 
          "model", 
          "point", 
          "equilibrium", 
          "part", 
          "growth", 
          "basis", 
          "criteria", 
          "version", 
          "discussion", 
          "years"
        ], 
        "name": "Directional solidification and phase equilibria in the Ni-Al system", 
        "pagination": "3167-3175", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012067903"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-999-0227-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-999-0227-1", 
          "https://app.dimensions.ai/details/publication/pub.1012067903"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_320.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-999-0227-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0227-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      22 PREDICATES      73 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-999-0227-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1245a55849e644e0b319cf655e98e027
    4 schema:citation sg:pub.10.1007/bf02646356
    5 sg:pub.10.1007/bf02647608
    6 sg:pub.10.1007/bf02663666
    7 sg:pub.10.1007/bf02698258
    8 schema:datePublished 1999-12
    9 schema:datePublishedReg 1999-12-01
    10 schema:description A method for the optimization of a phase diagram on the basis of results from directional solidification experiments is proposed. The experimental microstructure selection map is compared with a calculated map and the input parameters are varied until a satisfactory agreement is obtained. The calculation of the microstructure selection map is based on the maximum temperature criterion and on analytical models for the growth of plane front, dendritic, and eutectic structures. This method is applied to the Ni-Al system where the phase equilibria close to the melting point of the γ′-Ni3Al phase have been subject to discussion for over 50 years. A new version of this part of the phase diagram is proposed, which is coherent with the results from directional solidification experiments.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N81f1e51e93234729a57d63676d8eced9
    15 Nd09646630aa3453f91fe8d5d3821e029
    16 sg:journal.1136292
    17 schema:keywords Ni-Al system
    18 agreement
    19 analytical model
    20 basis
    21 basis of results
    22 calculations
    23 criteria
    24 diagram
    25 directional solidification
    26 directional solidification experiments
    27 discussion
    28 equilibrium
    29 eutectic structure
    30 experiments
    31 front
    32 growth
    33 input parameters
    34 maps
    35 maximum temperature criterion
    36 melting point
    37 method
    38 microstructure selection map
    39 model
    40 new version
    41 optimization
    42 parameters
    43 part
    44 phase
    45 phase diagram
    46 phase equilibria
    47 plane front
    48 point
    49 results
    50 satisfactory agreement
    51 selection map
    52 solidification
    53 solidification experiments
    54 structure
    55 system
    56 temperature criterion
    57 version
    58 years
    59 γ′-Ni3Al phase
    60 schema:name Directional solidification and phase equilibria in the Ni-Al system
    61 schema:pagination 3167-3175
    62 schema:productId N5e883d24d63f4e97b8b7491d88aaa46e
    63 Nb5cc62c062214bbfa86902f5088df584
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012067903
    65 https://doi.org/10.1007/s11661-999-0227-1
    66 schema:sdDatePublished 2022-05-20T07:21
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N6b99bdf924a74293b085cc229c16479b
    69 schema:url https://doi.org/10.1007/s11661-999-0227-1
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N1245a55849e644e0b319cf655e98e027 rdf:first sg:person.016642161765.41
    74 rdf:rest Nc0fc8d503b1d41feb2693c36fca2899a
    75 N5e883d24d63f4e97b8b7491d88aaa46e schema:name doi
    76 schema:value 10.1007/s11661-999-0227-1
    77 rdf:type schema:PropertyValue
    78 N6b99bdf924a74293b085cc229c16479b schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N81f1e51e93234729a57d63676d8eced9 schema:volumeNumber 30
    81 rdf:type schema:PublicationVolume
    82 Nb5cc62c062214bbfa86902f5088df584 schema:name dimensions_id
    83 schema:value pub.1012067903
    84 rdf:type schema:PropertyValue
    85 Nc0fc8d503b1d41feb2693c36fca2899a rdf:first sg:person.010017145423.41
    86 rdf:rest rdf:nil
    87 Nd09646630aa3453f91fe8d5d3821e029 schema:issueNumber 12
    88 rdf:type schema:PublicationIssue
    89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Engineering
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Materials Engineering
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1136292 schema:issn 1073-5623
    96 1543-1940
    97 schema:name Metallurgical and Materials Transactions A
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    101 schema:familyName Kurz
    102 schema:givenName W.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    104 rdf:type schema:Person
    105 sg:person.016642161765.41 schema:affiliation grid-institutes:grid.5335.0
    106 schema:familyName Hunziker
    107 schema:givenName O.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642161765.41
    109 rdf:type schema:Person
    110 sg:pub.10.1007/bf02646356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026043254
    111 https://doi.org/10.1007/bf02646356
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02647608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049272385
    114 https://doi.org/10.1007/bf02647608
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf02663666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014443916
    117 https://doi.org/10.1007/bf02663666
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf02698258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010054991
    120 https://doi.org/10.1007/bf02698258
    121 rdf:type schema:CreativeWork
    122 grid-institutes:grid.5333.6 schema:alternateName the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland
    123 schema:name the Laboratory of Physical Metallurgy, Department of Materials, Swiss Federal Institute of Technology, 1015, Lausanne EPFL, Switzerland
    124 rdf:type schema:Organization
    125 grid-institutes:grid.5335.0 schema:alternateName the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom
    126 schema:name the Rolls-Royce University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, CB2 3QZ, Cambridge, United Kingdom
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...