A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

Ch. -A. Gandin, J. -L. Desbiolles, M. Rappaz, Ph. Thevoz

ABSTRACT

A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes. More... »

PAGES

3153-3165

References to SciGraph publications

  • 1996-03. Prediction of grain structures in various solidification processes in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1994-03. 3-Dimensional simulation of the grain formation in investment castings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1993-02. Three-dimensional probabilistic simulation of solidification grain structures: Application to superalloy precision castings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1995-06. Grain texture evolution during the columnar growth of dendritic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-02. Modeling of equiaxed microstructure formation in casting in METALLURGICAL TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2

    DOI

    http://dx.doi.org/10.1007/s11661-999-0226-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030866354


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gandin", 
            "givenName": "Ch. -A.", 
            "id": "sg:person.010332710054.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desbiolles", 
            "givenName": "J. -L.", 
            "id": "sg:person.011355726671.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ESI Group (Switzerland)", 
              "id": "https://www.grid.ac/institutes/grid.433079.a", 
              "name": [
                "Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thevoz", 
            "givenName": "Ph.", 
            "id": "sg:person.014717560262.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02651604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001291895", 
              "https://doi.org/10.1007/bf02651604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001291895", 
              "https://doi.org/10.1007/bf02651604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(87)90346-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001405332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(87)90346-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001405332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008404524", 
              "https://doi.org/10.1007/bf02647605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008404524", 
              "https://doi.org/10.1007/bf02647605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(89)90065-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010389843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(89)90065-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010389843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(81)90115-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013508438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(81)90115-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013508438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6454(96)00303-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017197447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0956-7151(92)90009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018886107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0956-7151(92)90009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018886107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(74)90251-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021346730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(74)90251-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021346730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0956-7151(92)90050-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024497276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0956-7151(92)90050-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024497276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-1977-0431719-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026121031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/imr.1989.34.1.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031352197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033404338", 
              "https://doi.org/10.1007/bf02648956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033404338", 
              "https://doi.org/10.1007/bf02648956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/mst.1989.5.4.362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034575632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035268094", 
              "https://doi.org/10.1007/bf02657334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(88)90216-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038229997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(88)90216-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038229997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(86)90056-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038473152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(86)90056-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038473152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040303849", 
              "https://doi.org/10.1007/bf02670257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040303849", 
              "https://doi.org/10.1007/bf02670257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1359-6454(95)00433-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040899632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0956-7151(94)90302-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050112388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0956-7151(94)90302-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050112388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1747588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057809754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7449/1997/superalloys_1997_121_130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099495765"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called \u201cweak\u201d coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a \u201cfull\u201d coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11661-999-0226-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "name": "A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures", 
        "pagination": "3153-3165", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "930b093d463b6254ee04fbf6b06dd8d05aa7b837d9eb8e877da87110dbb8b0dc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-999-0226-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030866354"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-999-0226-2", 
          "https://app.dimensions.ai/details/publication/pub.1030866354"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11661-999-0226-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-999-0226-2 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nbf34f8cdfb8a42bcac44d3a2d0368de7
    4 schema:citation sg:pub.10.1007/bf02647605
    5 sg:pub.10.1007/bf02648956
    6 sg:pub.10.1007/bf02651604
    7 sg:pub.10.1007/bf02657334
    8 sg:pub.10.1007/bf02670257
    9 https://doi.org/10.1016/0001-6160(81)90115-2
    10 https://doi.org/10.1016/0001-6160(86)90056-8
    11 https://doi.org/10.1016/0001-6160(89)90065-5
    12 https://doi.org/10.1016/0022-0248(74)90251-6
    13 https://doi.org/10.1016/0022-0248(87)90346-0
    14 https://doi.org/10.1016/0022-0248(88)90216-3
    15 https://doi.org/10.1016/0956-7151(92)90009-4
    16 https://doi.org/10.1016/0956-7151(92)90050-o
    17 https://doi.org/10.1016/0956-7151(94)90302-6
    18 https://doi.org/10.1016/1359-6454(95)00433-5
    19 https://doi.org/10.1016/s1359-6454(96)00303-5
    20 https://doi.org/10.1063/1.1747588
    21 https://doi.org/10.1090/s0025-5718-1977-0431719-x
    22 https://doi.org/10.1179/imr.1989.34.1.93
    23 https://doi.org/10.1179/mst.1989.5.4.362
    24 https://doi.org/10.7449/1997/superalloys_1997_121_130
    25 schema:datePublished 1999-12
    26 schema:datePublishedReg 1999-12-01
    27 schema:description A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N60b9e8d458a347e9a2dec60d8904fbf1
    32 Naa6ce98cd1f244cc8a40e53318d20172
    33 sg:journal.1136292
    34 schema:name A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures
    35 schema:pagination 3153-3165
    36 schema:productId N035ec8c065e547aaab6933f6f3742d93
    37 N0d82f3fddbc54f638eafaa2463db0c97
    38 Nf43c0c71fc3340dabfbf8e30d249aa77
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866354
    40 https://doi.org/10.1007/s11661-999-0226-2
    41 schema:sdDatePublished 2019-04-11T13:00
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Na8647f6132a24567b99c01572d5337fb
    44 schema:url http://link.springer.com/10.1007%2Fs11661-999-0226-2
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N035ec8c065e547aaab6933f6f3742d93 schema:name doi
    49 schema:value 10.1007/s11661-999-0226-2
    50 rdf:type schema:PropertyValue
    51 N0d82f3fddbc54f638eafaa2463db0c97 schema:name dimensions_id
    52 schema:value pub.1030866354
    53 rdf:type schema:PropertyValue
    54 N60b9e8d458a347e9a2dec60d8904fbf1 schema:volumeNumber 30
    55 rdf:type schema:PublicationVolume
    56 N61d5cb7e71c240cf8ecb400edd0961d5 schema:name the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France
    57 rdf:type schema:Organization
    58 N6b66de0f7b934d8b9badddfa418fc1af rdf:first sg:person.013657516157.10
    59 rdf:rest Na06b509dfa5b4c2fb372d1bab4fdb6b4
    60 Na06b509dfa5b4c2fb372d1bab4fdb6b4 rdf:first sg:person.014717560262.48
    61 rdf:rest rdf:nil
    62 Na8647f6132a24567b99c01572d5337fb schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Naa6ce98cd1f244cc8a40e53318d20172 schema:issueNumber 12
    65 rdf:type schema:PublicationIssue
    66 Nbc26be08506f4034b0d0209e3a1a4f01 rdf:first sg:person.011355726671.24
    67 rdf:rest N6b66de0f7b934d8b9badddfa418fc1af
    68 Nbf34f8cdfb8a42bcac44d3a2d0368de7 rdf:first sg:person.010332710054.26
    69 rdf:rest Nbc26be08506f4034b0d0209e3a1a4f01
    70 Nf43c0c71fc3340dabfbf8e30d249aa77 schema:name readcube_id
    71 schema:value 930b093d463b6254ee04fbf6b06dd8d05aa7b837d9eb8e877da87110dbb8b0dc
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Engineering
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Materials Engineering
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1136292 schema:issn 1073-5623
    80 1543-1940
    81 schema:name Metallurgical and Materials Transactions A
    82 rdf:type schema:Periodical
    83 sg:person.010332710054.26 schema:affiliation N61d5cb7e71c240cf8ecb400edd0961d5
    84 schema:familyName Gandin
    85 schema:givenName Ch. -A.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26
    87 rdf:type schema:Person
    88 sg:person.011355726671.24 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    89 schema:familyName Desbiolles
    90 schema:givenName J. -L.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24
    92 rdf:type schema:Person
    93 sg:person.013657516157.10 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    94 schema:familyName Rappaz
    95 schema:givenName M.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    97 rdf:type schema:Person
    98 sg:person.014717560262.48 schema:affiliation https://www.grid.ac/institutes/grid.433079.a
    99 schema:familyName Thevoz
    100 schema:givenName Ph.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48
    102 rdf:type schema:Person
    103 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
    104 https://doi.org/10.1007/bf02647605
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf02648956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404338
    107 https://doi.org/10.1007/bf02648956
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf02651604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
    110 https://doi.org/10.1007/bf02651604
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
    113 https://doi.org/10.1007/bf02657334
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf02670257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303849
    116 https://doi.org/10.1007/bf02670257
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0001-6160(81)90115-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013508438
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/0001-6160(86)90056-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038473152
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/0001-6160(89)90065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010389843
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0022-0248(74)90251-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021346730
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0022-0248(87)90346-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405332
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0022-0248(88)90216-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038229997
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0956-7151(92)90009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018886107
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0956-7151(92)90050-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1024497276
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0956-7151(94)90302-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050112388
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/1359-6454(95)00433-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040899632
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/s1359-6454(96)00303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017197447
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1063/1.1747588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057809754
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1090/s0025-5718-1977-0431719-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026121031
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1179/imr.1989.34.1.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031352197
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1179/mst.1989.5.4.362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034575632
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.7449/1997/superalloys_1997_121_130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099495765
    149 rdf:type schema:CreativeWork
    150 https://www.grid.ac/institutes/grid.433079.a schema:alternateName ESI Group (Switzerland)
    151 schema:name Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland
    152 rdf:type schema:Organization
    153 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
    154 schema:name the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...