A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

Ch. -A. Gandin, J. -L. Desbiolles, M. Rappaz, Ph. Thevoz

ABSTRACT

A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes. More... »

PAGES

3153-3165

References to SciGraph publications

  • 1996-03. Prediction of grain structures in various solidification processes in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1994-03. 3-Dimensional simulation of the grain formation in investment castings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1993-02. Three-dimensional probabilistic simulation of solidification grain structures: Application to superalloy precision castings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1995-06. Grain texture evolution during the columnar growth of dendritic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-02. Modeling of equiaxed microstructure formation in casting in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2

    DOI

    http://dx.doi.org/10.1007/s11661-999-0226-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030866354


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gandin", 
            "givenName": "Ch. -A.", 
            "id": "sg:person.010332710054.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desbiolles", 
            "givenName": "J. -L.", 
            "id": "sg:person.011355726671.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.433079.a", 
              "name": [
                "Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thevoz", 
            "givenName": "Ph.", 
            "id": "sg:person.014717560262.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02670257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040303849", 
              "https://doi.org/10.1007/bf02670257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008404524", 
              "https://doi.org/10.1007/bf02647605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001291895", 
              "https://doi.org/10.1007/bf02651604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02657334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035268094", 
              "https://doi.org/10.1007/bf02657334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033404338", 
              "https://doi.org/10.1007/bf02648956"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called \u201cweak\u201d coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a \u201cfull\u201d coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-999-0226-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "grain structure", 
          "FE nodes", 
          "temperature field", 
          "coarser finite element mesh", 
          "continuous casting process", 
          "typical grain structure", 
          "dendritic grain structure", 
          "solidification grain structures", 
          "new temperature field", 
          "finite element mesh", 
          "heat flow equation", 
          "mushy cell", 
          "realistic releases", 
          "casting process", 
          "investment casting", 
          "FE calculations", 
          "element model", 
          "microsegregation model", 
          "CAFE model", 
          "solidification proceeds", 
          "element mesh", 
          "solidification path", 
          "latent heat", 
          "enthalpy fields", 
          "simulation of nucleation", 
          "coupling modes", 
          "flow equations", 
          "simulation domain", 
          "macroscopic scale", 
          "three-dimensional model", 
          "physical phenomena", 
          "cellular automata algorithm", 
          "growth phenomena", 
          "cell grid", 
          "microscopic Ca", 
          "cubic cell", 
          "regular lattice", 
          "temperature", 
          "casting", 
          "solidification", 
          "mode", 
          "automata algorithm", 
          "dynamic allocation techniques", 
          "grid", 
          "prediction", 
          "heat", 
          "field", 
          "computation cost", 
          "structure", 
          "nucleation", 
          "simulations", 
          "model", 
          "mesh", 
          "increment", 
          "allocation technique", 
          "phenomenon", 
          "order", 
          "memory size", 
          "equations", 
          "fraction", 
          "positive values", 
          "solution", 
          "cost", 
          "large number", 
          "state index", 
          "calculations", 
          "technique", 
          "process", 
          "lattice", 
          "path", 
          "size", 
          "algorithm", 
          "nodes", 
          "potentiality", 
          "CA cells", 
          "values", 
          "scale", 
          "proceeds", 
          "Ca", 
          "release", 
          "rules", 
          "domain", 
          "number", 
          "basis", 
          "cells", 
          "index"
        ], 
        "name": "A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures", 
        "pagination": "3153-3165", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030866354"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-999-0226-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-999-0226-2", 
          "https://app.dimensions.ai/details/publication/pub.1030866354"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_322.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-999-0226-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      116 URIs      103 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-999-0226-2 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N006dc57efb974e7d8923d8793058344f
    4 schema:citation sg:pub.10.1007/bf02647605
    5 sg:pub.10.1007/bf02648956
    6 sg:pub.10.1007/bf02651604
    7 sg:pub.10.1007/bf02657334
    8 sg:pub.10.1007/bf02670257
    9 schema:datePublished 1999-12
    10 schema:datePublishedReg 1999-12-01
    11 schema:description A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N608ca03d8c71419a843cf708b2bd1ea5
    15 Nf17477769b754b52b87cdbf45321ef5a
    16 sg:journal.1136292
    17 schema:keywords CA cells
    18 CAFE model
    19 Ca
    20 FE calculations
    21 FE nodes
    22 algorithm
    23 allocation technique
    24 automata algorithm
    25 basis
    26 calculations
    27 casting
    28 casting process
    29 cell grid
    30 cells
    31 cellular automata algorithm
    32 coarser finite element mesh
    33 computation cost
    34 continuous casting process
    35 cost
    36 coupling modes
    37 cubic cell
    38 dendritic grain structure
    39 domain
    40 dynamic allocation techniques
    41 element mesh
    42 element model
    43 enthalpy fields
    44 equations
    45 field
    46 finite element mesh
    47 flow equations
    48 fraction
    49 grain structure
    50 grid
    51 growth phenomena
    52 heat
    53 heat flow equation
    54 increment
    55 index
    56 investment casting
    57 large number
    58 latent heat
    59 lattice
    60 macroscopic scale
    61 memory size
    62 mesh
    63 microscopic Ca
    64 microsegregation model
    65 mode
    66 model
    67 mushy cell
    68 new temperature field
    69 nodes
    70 nucleation
    71 number
    72 order
    73 path
    74 phenomenon
    75 physical phenomena
    76 positive values
    77 potentiality
    78 prediction
    79 proceeds
    80 process
    81 realistic releases
    82 regular lattice
    83 release
    84 rules
    85 scale
    86 simulation domain
    87 simulation of nucleation
    88 simulations
    89 size
    90 solidification
    91 solidification grain structures
    92 solidification path
    93 solidification proceeds
    94 solution
    95 state index
    96 structure
    97 technique
    98 temperature
    99 temperature field
    100 three-dimensional model
    101 typical grain structure
    102 values
    103 schema:name A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures
    104 schema:pagination 3153-3165
    105 schema:productId N7ac943138e1e4d60a231666d0bf402c6
    106 Neeb8b0d59562428f949111708be6f4dd
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866354
    108 https://doi.org/10.1007/s11661-999-0226-2
    109 schema:sdDatePublished 2022-08-04T16:53
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Nf30df89b955a4c93982b69967301adf6
    112 schema:url https://doi.org/10.1007/s11661-999-0226-2
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N006dc57efb974e7d8923d8793058344f rdf:first sg:person.010332710054.26
    117 rdf:rest Ne499b2b69b2e4aafb9a37d9da24fc3fc
    118 N600b8ed230464eb596ed9620eca79672 rdf:first sg:person.013657516157.10
    119 rdf:rest Nd5aa0475d1da4613a9a07779e75080a8
    120 N608ca03d8c71419a843cf708b2bd1ea5 schema:volumeNumber 30
    121 rdf:type schema:PublicationVolume
    122 N7ac943138e1e4d60a231666d0bf402c6 schema:name dimensions_id
    123 schema:value pub.1030866354
    124 rdf:type schema:PropertyValue
    125 Nd5aa0475d1da4613a9a07779e75080a8 rdf:first sg:person.014717560262.48
    126 rdf:rest rdf:nil
    127 Ne499b2b69b2e4aafb9a37d9da24fc3fc rdf:first sg:person.011355726671.24
    128 rdf:rest N600b8ed230464eb596ed9620eca79672
    129 Neeb8b0d59562428f949111708be6f4dd schema:name doi
    130 schema:value 10.1007/s11661-999-0226-2
    131 rdf:type schema:PropertyValue
    132 Nf17477769b754b52b87cdbf45321ef5a schema:issueNumber 12
    133 rdf:type schema:PublicationIssue
    134 Nf30df89b955a4c93982b69967301adf6 schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Engineering
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Materials Engineering
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1136292 schema:issn 1073-5623
    143 1543-1940
    144 schema:name Metallurgical and Materials Transactions A
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.010332710054.26 schema:affiliation grid-institutes:None
    148 schema:familyName Gandin
    149 schema:givenName Ch. -A.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26
    151 rdf:type schema:Person
    152 sg:person.011355726671.24 schema:affiliation grid-institutes:grid.5333.6
    153 schema:familyName Desbiolles
    154 schema:givenName J. -L.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24
    156 rdf:type schema:Person
    157 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    158 schema:familyName Rappaz
    159 schema:givenName M.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    161 rdf:type schema:Person
    162 sg:person.014717560262.48 schema:affiliation grid-institutes:grid.433079.a
    163 schema:familyName Thevoz
    164 schema:givenName Ph.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48
    166 rdf:type schema:Person
    167 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
    168 https://doi.org/10.1007/bf02647605
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/bf02648956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404338
    171 https://doi.org/10.1007/bf02648956
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/bf02651604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
    174 https://doi.org/10.1007/bf02651604
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
    177 https://doi.org/10.1007/bf02657334
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/bf02670257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303849
    180 https://doi.org/10.1007/bf02670257
    181 rdf:type schema:CreativeWork
    182 grid-institutes:None schema:alternateName the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France
    183 schema:name the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France
    184 rdf:type schema:Organization
    185 grid-institutes:grid.433079.a schema:alternateName Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland
    186 schema:name Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland
    187 rdf:type schema:Organization
    188 grid-institutes:grid.5333.6 schema:alternateName the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
    189 schema:name the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...