A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

Ch. -A. Gandin, J. -L. Desbiolles, M. Rappaz, Ph. Thevoz

ABSTRACT

A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes. More... »

PAGES

3153-3165

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2

DOI

http://dx.doi.org/10.1007/s11661-999-0226-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030866354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandin", 
        "givenName": "Ch. -A.", 
        "id": "sg:person.010332710054.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desbiolles", 
        "givenName": "J. -L.", 
        "id": "sg:person.011355726671.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ESI Group (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.433079.a", 
          "name": [
            "Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thevoz", 
        "givenName": "Ph.", 
        "id": "sg:person.014717560262.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02651604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001291895", 
          "https://doi.org/10.1007/bf02651604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001291895", 
          "https://doi.org/10.1007/bf02651604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(87)90346-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(87)90346-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008404524", 
          "https://doi.org/10.1007/bf02647605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008404524", 
          "https://doi.org/10.1007/bf02647605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(89)90065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(89)90065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(81)90115-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(81)90115-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(96)00303-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017197447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018886107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018886107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(74)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021346730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(74)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021346730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90050-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024497276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(92)90050-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024497276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0431719-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026121031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/imr.1989.34.1.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031352197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02648956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033404338", 
          "https://doi.org/10.1007/bf02648956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02648956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033404338", 
          "https://doi.org/10.1007/bf02648956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1989.5.4.362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034575632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268094", 
          "https://doi.org/10.1007/bf02657334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(88)90216-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038229997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(88)90216-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038229997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(86)90056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038473152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(86)90056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038473152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303849", 
          "https://doi.org/10.1007/bf02670257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303849", 
          "https://doi.org/10.1007/bf02670257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(95)00433-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040899632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)90302-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050112388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)90302-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050112388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1747588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057809754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7449/1997/superalloys_1997_121_130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099495765"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-12", 
    "datePublishedReg": "1999-12-01", 
    "description": "A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called \u201cweak\u201d coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a \u201cfull\u201d coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-999-0226-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures", 
    "pagination": "3153-3165", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "930b093d463b6254ee04fbf6b06dd8d05aa7b837d9eb8e877da87110dbb8b0dc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-999-0226-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030866354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-999-0226-2", 
      "https://app.dimensions.ai/details/publication/pub.1030866354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11661-999-0226-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0226-2'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-999-0226-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N495e46739b1b4baeb7aa9eca117222e0
4 schema:citation sg:pub.10.1007/bf02647605
5 sg:pub.10.1007/bf02648956
6 sg:pub.10.1007/bf02651604
7 sg:pub.10.1007/bf02657334
8 sg:pub.10.1007/bf02670257
9 https://doi.org/10.1016/0001-6160(81)90115-2
10 https://doi.org/10.1016/0001-6160(86)90056-8
11 https://doi.org/10.1016/0001-6160(89)90065-5
12 https://doi.org/10.1016/0022-0248(74)90251-6
13 https://doi.org/10.1016/0022-0248(87)90346-0
14 https://doi.org/10.1016/0022-0248(88)90216-3
15 https://doi.org/10.1016/0956-7151(92)90009-4
16 https://doi.org/10.1016/0956-7151(92)90050-o
17 https://doi.org/10.1016/0956-7151(94)90302-6
18 https://doi.org/10.1016/1359-6454(95)00433-5
19 https://doi.org/10.1016/s1359-6454(96)00303-5
20 https://doi.org/10.1063/1.1747588
21 https://doi.org/10.1090/s0025-5718-1977-0431719-x
22 https://doi.org/10.1179/imr.1989.34.1.93
23 https://doi.org/10.1179/mst.1989.5.4.362
24 https://doi.org/10.7449/1997/superalloys_1997_121_130
25 schema:datePublished 1999-12
26 schema:datePublishedReg 1999-12-01
27 schema:description A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during solidification is presented. This model is built on the basis of a 3-D cellular automaton (CA) algorithm. The simulation domain is subdivided into a regular lattice of cubic cells. Using physically based rules for the simulation of nucleation and growth phenomena, a state index associated with each cell is switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds. Because these physical phenomena are related to the temperature field, the cell grid is superimposed to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of solid increment is computed for each mushy cell using a truncated Scheil microsegregation model. These fractions of solid increments are then fed back to the FE nodes in order to update the new temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification path is no longer unique). Special dynamic allocation techniques have been designed in order to minimize the computation costs and memory size associated with a very large number of cells (typically 107 to 108). The potentiality of the CAFE model is demonstrated through the predictions of typical grain structures formed during the investment casting and continuous casting processes.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N238d2bd7af584ca69ed146507d7e77a7
32 N5b3d0af3bb474d10868be95ad88642d8
33 sg:journal.1136292
34 schema:name A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures
35 schema:pagination 3153-3165
36 schema:productId N167d56f9e1864404b1fd4f75807688a9
37 N9df07ff5da0e499ebdb6583e9b963844
38 Ncc54ec1609c44639ba7b47d098f4a954
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866354
40 https://doi.org/10.1007/s11661-999-0226-2
41 schema:sdDatePublished 2019-04-11T13:00
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nd62d599c1794459da97d599c5879b130
44 schema:url http://link.springer.com/10.1007%2Fs11661-999-0226-2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N159c043e657e4e10936af119df1bd643 schema:name the Ecole des Mines, Parc de Saurupt, F-54042, Nancy, France
49 rdf:type schema:Organization
50 N167d56f9e1864404b1fd4f75807688a9 schema:name dimensions_id
51 schema:value pub.1030866354
52 rdf:type schema:PropertyValue
53 N238d2bd7af584ca69ed146507d7e77a7 schema:issueNumber 12
54 rdf:type schema:PublicationIssue
55 N495e46739b1b4baeb7aa9eca117222e0 rdf:first sg:person.010332710054.26
56 rdf:rest N6dfb52cb23d545b1b1174256268b096a
57 N5b3d0af3bb474d10868be95ad88642d8 schema:volumeNumber 30
58 rdf:type schema:PublicationVolume
59 N6dfb52cb23d545b1b1174256268b096a rdf:first sg:person.011355726671.24
60 rdf:rest N7448c1074bfd46348b4545edfc425586
61 N7448c1074bfd46348b4545edfc425586 rdf:first sg:person.013657516157.10
62 rdf:rest Nf5e576fcd46d423bbd93a8ae6332f3a9
63 N9df07ff5da0e499ebdb6583e9b963844 schema:name readcube_id
64 schema:value 930b093d463b6254ee04fbf6b06dd8d05aa7b837d9eb8e877da87110dbb8b0dc
65 rdf:type schema:PropertyValue
66 Ncc54ec1609c44639ba7b47d098f4a954 schema:name doi
67 schema:value 10.1007/s11661-999-0226-2
68 rdf:type schema:PropertyValue
69 Nd62d599c1794459da97d599c5879b130 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nf5e576fcd46d423bbd93a8ae6332f3a9 rdf:first sg:person.014717560262.48
72 rdf:rest rdf:nil
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
77 schema:name Materials Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1136292 schema:issn 1073-5623
80 1543-1940
81 schema:name Metallurgical and Materials Transactions A
82 rdf:type schema:Periodical
83 sg:person.010332710054.26 schema:affiliation N159c043e657e4e10936af119df1bd643
84 schema:familyName Gandin
85 schema:givenName Ch. -A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332710054.26
87 rdf:type schema:Person
88 sg:person.011355726671.24 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
89 schema:familyName Desbiolles
90 schema:givenName J. -L.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355726671.24
92 rdf:type schema:Person
93 sg:person.013657516157.10 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
94 schema:familyName Rappaz
95 schema:givenName M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
97 rdf:type schema:Person
98 sg:person.014717560262.48 schema:affiliation https://www.grid.ac/institutes/grid.433079.a
99 schema:familyName Thevoz
100 schema:givenName Ph.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717560262.48
102 rdf:type schema:Person
103 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
104 https://doi.org/10.1007/bf02647605
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02648956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404338
107 https://doi.org/10.1007/bf02648956
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02651604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
110 https://doi.org/10.1007/bf02651604
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
113 https://doi.org/10.1007/bf02657334
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02670257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303849
116 https://doi.org/10.1007/bf02670257
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0001-6160(81)90115-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013508438
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0001-6160(86)90056-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038473152
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0001-6160(89)90065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010389843
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-0248(74)90251-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021346730
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0022-0248(87)90346-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405332
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0022-0248(88)90216-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038229997
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0956-7151(92)90009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018886107
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0956-7151(92)90050-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1024497276
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0956-7151(94)90302-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050112388
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/1359-6454(95)00433-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040899632
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1359-6454(96)00303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017197447
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.1747588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057809754
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1090/s0025-5718-1977-0431719-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026121031
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1179/imr.1989.34.1.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031352197
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1179/mst.1989.5.4.362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034575632
147 rdf:type schema:CreativeWork
148 https://doi.org/10.7449/1997/superalloys_1997_121_130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099495765
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.433079.a schema:alternateName ESI Group (Switzerland)
151 schema:name Calcom SA, PSE-EPFL, CH-1015, Lausanne, Switzerland
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
154 schema:name the Laboratoire de Metallurgie Physique, Departement des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...