An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

W. O. Soboyejo, J. Dipasquale, F. Ye, C. Mercer, T. S. Srivatsan, D. G. Konitzer

ABSTRACT

This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the “unzipping” of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 °C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics. More... »

PAGES

1025-1038

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-999-0155-0

DOI

http://dx.doi.org/10.1007/s11661-999-0155-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008913384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soboyejo", 
        "givenName": "W. O.", 
        "id": "sg:person.0747520604.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747520604.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dipasquale", 
        "givenName": "J.", 
        "id": "sg:person.010371247317.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371247317.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "F.", 
        "id": "sg:person.016615700734.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615700734.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mercer", 
        "givenName": "C.", 
        "id": "sg:person.0610333477.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610333477.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Mechanical Engineering, the University of Akron, 44325-0002, Akron, OH", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "the Department of Mechanical Engineering, the University of Akron, 44325-0002, Akron, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Electric Aircraft Engines, 45215-1915, Cincinnati, OH", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "General Electric Aircraft Engines, 45215-1915, Cincinnati, OH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konitzer", 
        "givenName": "D. G.", 
        "id": "sg:person.011764210317.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011764210317.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-998-0112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677516", 
          "https://doi.org/10.1007/s11661-998-0112-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02663850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000669758", 
          "https://doi.org/10.1007/bf02663850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0110-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051371990", 
          "https://doi.org/10.1007/s11661-997-0110-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03221360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042679681", 
          "https://doi.org/10.1007/bf03221360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0098-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037787795", 
          "https://doi.org/10.1007/s11661-998-0098-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043956069", 
          "https://doi.org/10.1007/bf02646877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02914402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034752463", 
          "https://doi.org/10.1007/bf02914402"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa\u221am), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (\u223c9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the \u201cunzipping\u201d of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 \u00b0C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-999-0155-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "fracture behavior", 
      "crack growth", 
      "intermetallic alloys", 
      "oxide-induced crack closure", 
      "room-temperature ductility", 
      "fatigue crack growth", 
      "crack growth mechanism", 
      "pure Nb", 
      "uniaxial yield stress", 
      "bulk yielding", 
      "fracture toughness", 
      "comparable fatigue", 
      "threshold fatigue", 
      "growth resistance", 
      "crack closure", 
      "crack tip", 
      "plastic deformation", 
      "gauge section", 
      "tensile specimen", 
      "attractive combination", 
      "tensile deformation", 
      "yield stress", 
      "slip bands", 
      "subsequent fatigue", 
      "alloy", 
      "microplasticity", 
      "stress levels", 
      "shielding effect", 
      "deformation", 
      "growth mechanism", 
      "single-crystal copper", 
      "room temperature", 
      "fatigue", 
      "ductility", 
      "IN718", 
      "Ti-6Al-4V", 
      "toughness", 
      "Nb", 
      "cracks", 
      "intermetallics", 
      "yielding", 
      "behavior", 
      "temperature", 
      "specimen", 
      "tip", 
      "copper", 
      "stress", 
      "growth rate", 
      "resistance", 
      "investigation", 
      "unzipping", 
      "growth", 
      "mechanism", 
      "band", 
      "results", 
      "combination", 
      "effect", 
      "rate", 
      "sections", 
      "study", 
      "initiation", 
      "closure", 
      "Neumann", 
      "article", 
      "levels", 
      "accumulation", 
      "B2", 
      "spread", 
      "onset", 
      "orthorhombic intermetallic alloy", 
      "spread of microplasticity", 
      "accumulation of microplasticity", 
      "dominant crack tip", 
      "high-temperature niobium-based intermetallics", 
      "niobium-based intermetallics"
    ], 
    "name": "An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy", 
    "pagination": "1025-1038", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008913384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-999-0155-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-999-0155-0", 
      "https://app.dimensions.ai/details/publication/pub.1008913384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_330.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-999-0155-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0155-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0155-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0155-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-999-0155-0'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      107 URIs      92 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-999-0155-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nea11a6b8137c4bd38fc00d7a1c010a27
4 schema:citation sg:pub.10.1007/bf02646877
5 sg:pub.10.1007/bf02663850
6 sg:pub.10.1007/bf02914402
7 sg:pub.10.1007/bf03221360
8 sg:pub.10.1007/s11661-997-0110-x
9 sg:pub.10.1007/s11661-998-0098-x
10 sg:pub.10.1007/s11661-998-0112-3
11 schema:datePublished 1999-04
12 schema:datePublishedReg 1999-04-01
13 schema:description This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the “unzipping” of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 °C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N14a6bfea554f4271af90e8380fda3e54
18 Nd42bd97544e94a8da56d7d23e818f13a
19 sg:journal.1136292
20 schema:keywords B2
21 IN718
22 Nb
23 Neumann
24 Ti-6Al-4V
25 accumulation
26 accumulation of microplasticity
27 alloy
28 article
29 attractive combination
30 band
31 behavior
32 bulk yielding
33 closure
34 combination
35 comparable fatigue
36 copper
37 crack closure
38 crack growth
39 crack growth mechanism
40 crack tip
41 cracks
42 deformation
43 dominant crack tip
44 ductility
45 effect
46 fatigue
47 fatigue crack growth
48 fracture behavior
49 fracture toughness
50 gauge section
51 growth
52 growth mechanism
53 growth rate
54 growth resistance
55 high-temperature niobium-based intermetallics
56 initiation
57 intermetallic alloys
58 intermetallics
59 investigation
60 levels
61 mechanism
62 microplasticity
63 niobium-based intermetallics
64 onset
65 orthorhombic intermetallic alloy
66 oxide-induced crack closure
67 plastic deformation
68 pure Nb
69 rate
70 resistance
71 results
72 room temperature
73 room-temperature ductility
74 sections
75 shielding effect
76 single-crystal copper
77 slip bands
78 specimen
79 spread
80 spread of microplasticity
81 stress
82 stress levels
83 study
84 subsequent fatigue
85 temperature
86 tensile deformation
87 tensile specimen
88 threshold fatigue
89 tip
90 toughness
91 uniaxial yield stress
92 unzipping
93 yield stress
94 yielding
95 schema:name An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy
96 schema:pagination 1025-1038
97 schema:productId N983abdf67553440da0c122f0cd1abcea
98 Nfddab46820424ef59f28fbfa379c96ef
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008913384
100 https://doi.org/10.1007/s11661-999-0155-0
101 schema:sdDatePublished 2021-11-01T18:04
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nc44ac188fc3c4c289bb90ee6406a67f4
104 schema:url https://doi.org/10.1007/s11661-999-0155-0
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N14a6bfea554f4271af90e8380fda3e54 schema:volumeNumber 30
109 rdf:type schema:PublicationVolume
110 N1c86bd22dfa8443eae10e4f3a611f746 rdf:first sg:person.016615700734.20
111 rdf:rest Nadf30ec743134b1cbb907aec4de9c98f
112 N26e05bd32dc648a787c4461046dce78a rdf:first sg:person.010371247317.46
113 rdf:rest N1c86bd22dfa8443eae10e4f3a611f746
114 N870df83e158241ca9124cfa7f2fa7fc0 rdf:first sg:person.011764210317.44
115 rdf:rest rdf:nil
116 N983abdf67553440da0c122f0cd1abcea schema:name dimensions_id
117 schema:value pub.1008913384
118 rdf:type schema:PropertyValue
119 N99d6c5edfa7641b4bea954055fb1d2c3 rdf:first sg:person.015440524245.80
120 rdf:rest N870df83e158241ca9124cfa7f2fa7fc0
121 Nadf30ec743134b1cbb907aec4de9c98f rdf:first sg:person.0610333477.18
122 rdf:rest N99d6c5edfa7641b4bea954055fb1d2c3
123 Nc44ac188fc3c4c289bb90ee6406a67f4 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nd42bd97544e94a8da56d7d23e818f13a schema:issueNumber 4
126 rdf:type schema:PublicationIssue
127 Nea11a6b8137c4bd38fc00d7a1c010a27 rdf:first sg:person.0747520604.90
128 rdf:rest N26e05bd32dc648a787c4461046dce78a
129 Nfddab46820424ef59f28fbfa379c96ef schema:name doi
130 schema:value 10.1007/s11661-999-0155-0
131 rdf:type schema:PropertyValue
132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
133 schema:name Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
136 schema:name Materials Engineering
137 rdf:type schema:DefinedTerm
138 sg:journal.1136292 schema:issn 1073-5623
139 1543-1940
140 schema:name Metallurgical and Materials Transactions A
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.010371247317.46 schema:affiliation grid-institutes:grid.261331.4
144 schema:familyName Dipasquale
145 schema:givenName J.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371247317.46
147 rdf:type schema:Person
148 sg:person.011764210317.44 schema:affiliation grid-institutes:None
149 schema:familyName Konitzer
150 schema:givenName D. G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011764210317.44
152 rdf:type schema:Person
153 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
154 schema:familyName Srivatsan
155 schema:givenName T. S.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
157 rdf:type schema:Person
158 sg:person.016615700734.20 schema:affiliation grid-institutes:grid.261331.4
159 schema:familyName Ye
160 schema:givenName F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615700734.20
162 rdf:type schema:Person
163 sg:person.0610333477.18 schema:affiliation grid-institutes:grid.261331.4
164 schema:familyName Mercer
165 schema:givenName C.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610333477.18
167 rdf:type schema:Person
168 sg:person.0747520604.90 schema:affiliation grid-institutes:grid.261331.4
169 schema:familyName Soboyejo
170 schema:givenName W. O.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747520604.90
172 rdf:type schema:Person
173 sg:pub.10.1007/bf02646877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043956069
174 https://doi.org/10.1007/bf02646877
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf02663850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000669758
177 https://doi.org/10.1007/bf02663850
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/bf02914402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034752463
180 https://doi.org/10.1007/bf02914402
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf03221360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042679681
183 https://doi.org/10.1007/bf03221360
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s11661-997-0110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051371990
186 https://doi.org/10.1007/s11661-997-0110-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s11661-998-0098-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787795
189 https://doi.org/10.1007/s11661-998-0098-x
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11661-998-0112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677516
192 https://doi.org/10.1007/s11661-998-0112-3
193 rdf:type schema:CreativeWork
194 grid-institutes:None schema:alternateName General Electric Aircraft Engines, 45215-1915, Cincinnati, OH
195 schema:name General Electric Aircraft Engines, 45215-1915, Cincinnati, OH
196 rdf:type schema:Organization
197 grid-institutes:grid.261331.4 schema:alternateName the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH
198 schema:name the Department of Materials Science and Engineering, The Ohio State University, 43210-1179, Columbus, OH
199 rdf:type schema:Organization
200 grid-institutes:grid.265881.0 schema:alternateName the Department of Mechanical Engineering, the University of Akron, 44325-0002, Akron, OH
201 schema:name the Department of Mechanical Engineering, the University of Akron, 44325-0002, Akron, OH
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...