〈110〉 dendrite growth in aluminum feathery grains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-11

AUTHORS

S. Henry, M. Rappaz, P. Jarry

ABSTRACT

Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of 〈110〉 primary dendrite trunks (e.g., [01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 1$$ \end{document}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 µm) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). The [01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 1$$ \end{document}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)—a feature probably resulting from a growth competition mechanism similar to that occurring during normal 〈100〉 columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along 〈110〉 directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that 〈110〉 branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2$$ \end{document}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal 〈100〉 to a 〈110〉 surface tension/attachment kinetics anisotropy growth mode. This change might be induced by the added solute elements, by the local solidification conditions (thermal gradient, growth rate, and melt convection), and possibly by the help of the twin plane itself. Convection in the melt could also play a role in the symmetrization of the 〈110〉 growth directions of the side arms. Finally, the proposed mechanisms of feathery grain growth are further supported by the observation of 〈110〉 dendrite growth morphologies in thin aluminum-zinc coatings. More... »

PAGES

2807-2817

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-998-0321-9

DOI

http://dx.doi.org/10.1007/s11661-998-0321-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015245284


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henry", 
        "givenName": "S.", 
        "id": "sg:person.01067574734.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067574734.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratoire de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pechiney Centre de Recherches de Voreppe, F-38340, Voreppe, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Pechiney Centre de Recherches de Voreppe, F-38340, Voreppe, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarry", 
        "givenName": "P.", 
        "id": "sg:person.015370620771.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370620771.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03398154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099695676", 
          "https://doi.org/10.1007/bf03398154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/343523a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004730035", 
          "https://doi.org/10.1038/343523a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03338303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013181760", 
          "https://doi.org/10.1007/bf03338303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008404524", 
          "https://doi.org/10.1007/bf02647605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00549679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398458", 
          "https://doi.org/10.1007/bf00549679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0097-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044444789", 
          "https://doi.org/10.1007/s11661-997-0097-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01103527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049828022", 
          "https://doi.org/10.1007/bf01103527"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-11", 
    "datePublishedReg": "1998-11-01", 
    "description": "Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of \u3008110\u3009 primary dendrite trunks (e.g., [01\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\bar 1$$\n\\end{document}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 \u00b5m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). The [01\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\bar 1$$\n\\end{document}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)\u2014a feature probably resulting from a growth competition mechanism similar to that occurring during normal \u3008100\u3009 columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along \u3008110\u3009 directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that \u3008110\u3009 branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\bar 2$$\n\\end{document}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal \u3008100\u3009 to a \u3008110\u3009 surface tension/attachment kinetics anisotropy growth mode. This change might be induced by the added solute elements, by the local solidification conditions (thermal gradient, growth rate, and melt convection), and possibly by the help of the twin plane itself. Convection in the melt could also play a role in the symmetrization of the \u3008110\u3009 growth directions of the side arms. Finally, the proposed mechanisms of feathery grain growth are further supported by the observation of \u3008110\u3009 dendrite growth morphologies in thin aluminum-zinc coatings.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-998-0321-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "feathery grains", 
      "coherent (111) twin plane", 
      "aluminum-silicon alloys", 
      "twin boundaries", 
      "local solidification conditions", 
      "thermal gradient direction", 
      "aluminum-zinc coatings", 
      "dendrite trunks", 
      "secondary dendrite arms", 
      "direct chill", 
      "twin planes", 
      "optical microscopy observations", 
      "solidification conditions", 
      "grain growth", 
      "solute elements", 
      "dendrite arms", 
      "primary dendrite trunks", 
      "growth mode", 
      "microscopy observations", 
      "growth direction", 
      "electron microscopy", 
      "orders of magnitude", 
      "growth morphology", 
      "successive rows", 
      "noncoherent twin boundary", 
      "gradient direction", 
      "grains", 
      "diffraction patterns", 
      "alloy", 
      "regular arrangement", 
      "coatings", 
      "average spacing", 
      "silicon", 
      "plane", 
      "convection", 
      "boundaries", 
      "direction", 
      "primary dendrites", 
      "spacing", 
      "propagation", 
      "competition mechanism", 
      "melt", 
      "columnar", 
      "microscopy", 
      "morphology", 
      "mode", 
      "process", 
      "orientation", 
      "conditions", 
      "observations", 
      "magnitude", 
      "mechanism", 
      "order", 
      "branching mechanism", 
      "elements", 
      "arrangement", 
      "side", 
      "growth", 
      "electrons", 
      "results", 
      "help", 
      "rows", 
      "dendrites", 
      "side arms", 
      "arm", 
      "features", 
      "changes", 
      "region", 
      "chills", 
      "symmetrization", 
      "center", 
      "patterns", 
      "trunk", 
      "role", 
      "automatic indexing", 
      "indexing", 
      "evidence"
    ], 
    "name": "\u3008110\u3009 dendrite growth in aluminum feathery grains", 
    "pagination": "2807-2817", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015245284"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-998-0321-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-998-0321-9", 
      "https://app.dimensions.ai/details/publication/pub.1015245284"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_276.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-998-0321-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-998-0321-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-998-0321-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-998-0321-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-998-0321-9'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      109 URIs      94 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-998-0321-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na74512c5f90944298300090d4a0ccaed
4 schema:citation sg:pub.10.1007/bf00549679
5 sg:pub.10.1007/bf01103527
6 sg:pub.10.1007/bf02647605
7 sg:pub.10.1007/bf03338303
8 sg:pub.10.1007/bf03398154
9 sg:pub.10.1007/s11661-997-0097-3
10 sg:pub.10.1038/343523a0
11 schema:datePublished 1998-11
12 schema:datePublishedReg 1998-11-01
13 schema:description Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of 〈110〉 primary dendrite trunks (e.g., [01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 1$$ \end{document}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 µm) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). The [01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 1$$ \end{document}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)—a feature probably resulting from a growth competition mechanism similar to that occurring during normal 〈100〉 columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along 〈110〉 directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that 〈110〉 branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2$$ \end{document}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal 〈100〉 to a 〈110〉 surface tension/attachment kinetics anisotropy growth mode. This change might be induced by the added solute elements, by the local solidification conditions (thermal gradient, growth rate, and melt convection), and possibly by the help of the twin plane itself. Convection in the melt could also play a role in the symmetrization of the 〈110〉 growth directions of the side arms. Finally, the proposed mechanisms of feathery grain growth are further supported by the observation of 〈110〉 dendrite growth morphologies in thin aluminum-zinc coatings.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N91f12ff1a34d43fcad04dee24e7a2416
17 Nc1729c58ed9640e39fd647bfc1325e4e
18 sg:journal.1136292
19 schema:keywords alloy
20 aluminum-silicon alloys
21 aluminum-zinc coatings
22 arm
23 arrangement
24 automatic indexing
25 average spacing
26 boundaries
27 branching mechanism
28 center
29 changes
30 chills
31 coatings
32 coherent (111) twin plane
33 columnar
34 competition mechanism
35 conditions
36 convection
37 dendrite arms
38 dendrite trunks
39 dendrites
40 diffraction patterns
41 direct chill
42 direction
43 electron microscopy
44 electrons
45 elements
46 evidence
47 feathery grains
48 features
49 gradient direction
50 grain growth
51 grains
52 growth
53 growth direction
54 growth mode
55 growth morphology
56 help
57 indexing
58 local solidification conditions
59 magnitude
60 mechanism
61 melt
62 microscopy
63 microscopy observations
64 mode
65 morphology
66 noncoherent twin boundary
67 observations
68 optical microscopy observations
69 order
70 orders of magnitude
71 orientation
72 patterns
73 plane
74 primary dendrite trunks
75 primary dendrites
76 process
77 propagation
78 region
79 regular arrangement
80 results
81 role
82 rows
83 secondary dendrite arms
84 side
85 side arms
86 silicon
87 solidification conditions
88 solute elements
89 spacing
90 successive rows
91 symmetrization
92 thermal gradient direction
93 trunk
94 twin boundaries
95 twin planes
96 schema:name 〈110〉 dendrite growth in aluminum feathery grains
97 schema:pagination 2807-2817
98 schema:productId N6b4fa0749a7d4e6bbd42b4e145436c13
99 Naa77390579854dd2b0b0f551a52159ad
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015245284
101 https://doi.org/10.1007/s11661-998-0321-9
102 schema:sdDatePublished 2022-12-01T06:21
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N3cfe4eec780f45228f3927071fd55002
105 schema:url https://doi.org/10.1007/s11661-998-0321-9
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N26acc69ae5584575982526393cf27aad rdf:first sg:person.013657516157.10
110 rdf:rest N70e10da33c194938adefe300ed319088
111 N3cfe4eec780f45228f3927071fd55002 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N6b4fa0749a7d4e6bbd42b4e145436c13 schema:name dimensions_id
114 schema:value pub.1015245284
115 rdf:type schema:PropertyValue
116 N70e10da33c194938adefe300ed319088 rdf:first sg:person.015370620771.62
117 rdf:rest rdf:nil
118 N91f12ff1a34d43fcad04dee24e7a2416 schema:issueNumber 11
119 rdf:type schema:PublicationIssue
120 Na74512c5f90944298300090d4a0ccaed rdf:first sg:person.01067574734.36
121 rdf:rest N26acc69ae5584575982526393cf27aad
122 Naa77390579854dd2b0b0f551a52159ad schema:name doi
123 schema:value 10.1007/s11661-998-0321-9
124 rdf:type schema:PropertyValue
125 Nc1729c58ed9640e39fd647bfc1325e4e schema:volumeNumber 29
126 rdf:type schema:PublicationVolume
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
131 schema:name Materials Engineering
132 rdf:type schema:DefinedTerm
133 sg:journal.1136292 schema:issn 1073-5623
134 1543-1940
135 schema:name Metallurgical and Materials Transactions A
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01067574734.36 schema:affiliation grid-institutes:grid.5333.6
139 schema:familyName Henry
140 schema:givenName S.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067574734.36
142 rdf:type schema:Person
143 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
144 schema:familyName Rappaz
145 schema:givenName M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
147 rdf:type schema:Person
148 sg:person.015370620771.62 schema:affiliation grid-institutes:None
149 schema:familyName Jarry
150 schema:givenName P.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370620771.62
152 rdf:type schema:Person
153 sg:pub.10.1007/bf00549679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398458
154 https://doi.org/10.1007/bf00549679
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf01103527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049828022
157 https://doi.org/10.1007/bf01103527
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
160 https://doi.org/10.1007/bf02647605
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf03338303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013181760
163 https://doi.org/10.1007/bf03338303
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf03398154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099695676
166 https://doi.org/10.1007/bf03398154
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11661-997-0097-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444789
169 https://doi.org/10.1007/s11661-997-0097-3
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/343523a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730035
172 https://doi.org/10.1038/343523a0
173 rdf:type schema:CreativeWork
174 grid-institutes:None schema:alternateName Pechiney Centre de Recherches de Voreppe, F-38340, Voreppe, France
175 schema:name Pechiney Centre de Recherches de Voreppe, F-38340, Voreppe, France
176 rdf:type schema:Organization
177 grid-institutes:grid.5333.6 schema:alternateName the Laboratoire de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
178 schema:name the Laboratoire de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...