Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

R. Acuña, M. J. Cristóbal, C. M. Abreu, M. Cabeza

ABSTRACT

Friction stir processing (FSP) is applied to create surface metal–matrix composites (SMMCs). This study aims to develop defect-free surface composites on AA2024 aluminum alloy with structural hardening (T351). It focuses on the effect of the number and direction of FSP passes on the particle distribution and microstructural modifications of the processed region, and their relationship with wear behavior of the composite layers. Results confirm that FSP can fabricate an SMMC with an acceptable homogeneous dispersion of particles. An electron backscatter diffraction (EBSD) technique is used to investigate the evolution of the grain size through the different regions of the friction stir-processed (FSPed) samples, indicating a significant grain size reduction in the nugget zone because of dynamic recrystallization. The surface properties are studied by measuring hardness and resistance to sliding wear. Although SMMC hardness at the nugget is similar to the base material, it demonstrates improved wear resistance. Under the sliding conditions of this study, specific wear rate is reduced significantly (between 24 and 40 pct) with respect to the as-received aluminum alloy. Moreover, the worn tracks indicate the same wear mechanisms operating simultaneously in both materials. More... »

PAGES

1-15

Journal

TITLE

Metallurgical and Materials Transactions A

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-019-05172-6

DOI

http://dx.doi.org/10.1007/s11661-019-05172-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113045763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "ENCOMAT Group, University of Vigo, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acu\u00f1a", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "ENCOMAT Group, University of Vigo, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crist\u00f3bal", 
        "givenName": "M. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "ENCOMAT Group, University of Vigo, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abreu", 
        "givenName": "C. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "ENCOMAT Group, University of Vigo, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cabeza", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmrt.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000783315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2010.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000905131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-577x(00)00191-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001427429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002109255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sia.5207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003844492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2011.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004722813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2016.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007133729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2015.07.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008786345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.07.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010888686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2012.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011386683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018653030270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011464057", 
          "https://doi.org/10.1023/a:1018653030270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2008.09.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012521689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2009.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012596229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012808805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2010.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013422803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(03)00121-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014521536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(03)00121-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014521536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mser.2005.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015184288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mser.2005.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015184288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2016.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024946639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2015.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmrt.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027222980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.mra2008192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028988012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.02.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029337383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-938x(98)00116-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031501550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0224-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033170138", 
          "https://doi.org/10.1007/s11661-999-0224-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0224-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033170138", 
          "https://doi.org/10.1007/s11661-999-0224-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.08.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035090009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2011.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038115649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.protcy.2016.03.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038629031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2005.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040034229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.04.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044800476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045643720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2009.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045758930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00199-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047830735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.12.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050921423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2014.12.291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051093489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-3069(00)00081-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052768232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085432826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "Friction stir processing (FSP) is applied to create surface metal\u2013matrix composites (SMMCs). This study aims to develop defect-free surface composites on AA2024 aluminum alloy with structural hardening (T351). It focuses on the effect of the number and direction of FSP passes on the particle distribution and microstructural modifications of the processed region, and their relationship with wear behavior of the composite layers. Results confirm that FSP can fabricate an SMMC with an acceptable homogeneous dispersion of particles. An electron backscatter diffraction (EBSD) technique is used to investigate the evolution of the grain size through the different regions of the friction stir-processed (FSPed) samples, indicating a significant grain size reduction in the nugget zone because of dynamic recrystallization. The surface properties are studied by measuring hardness and resistance to sliding wear. Although SMMC hardness at the nugget is similar to the base material, it demonstrates improved wear resistance. Under the sliding conditions of this study, specific wear rate is reduced significantly (between 24 and 40 pct) with respect to the as-received aluminum alloy. Moreover, the worn tracks indicate the same wear mechanisms operating simultaneously in both materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-019-05172-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }
    ], 
    "name": "Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f22614b44f92200931355f620e99a8fa1f0655d2c514a94277aa09a29ec6d84"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-019-05172-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113045763"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-019-05172-6", 
      "https://app.dimensions.ai/details/publication/pub.1113045763"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11661-019-05172-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05172-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05172-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05172-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05172-6'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-019-05172-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N555b3d770a854a80be90a1b810b1d52b
4 schema:citation sg:pub.10.1007/s11661-999-0224-4
5 sg:pub.10.1023/a:1018653030270
6 https://doi.org/10.1002/sia.5207
7 https://doi.org/10.1016/j.actamat.2005.02.007
8 https://doi.org/10.1016/j.compscitech.2005.05.027
9 https://doi.org/10.1016/j.corsci.2009.05.001
10 https://doi.org/10.1016/j.ijfatigue.2016.02.007
11 https://doi.org/10.1016/j.jmatprotec.2011.04.015
12 https://doi.org/10.1016/j.jmatprotec.2011.04.016
13 https://doi.org/10.1016/j.jmrt.2013.10.004
14 https://doi.org/10.1016/j.jmrt.2015.02.006
15 https://doi.org/10.1016/j.matchar.2009.05.011
16 https://doi.org/10.1016/j.matdes.2013.05.059
17 https://doi.org/10.1016/j.msea.2008.09.064
18 https://doi.org/10.1016/j.msea.2012.08.073
19 https://doi.org/10.1016/j.msea.2014.02.067
20 https://doi.org/10.1016/j.msea.2014.12.077
21 https://doi.org/10.1016/j.msea.2015.07.093
22 https://doi.org/10.1016/j.msea.2016.04.094
23 https://doi.org/10.1016/j.msea.2016.05.056
24 https://doi.org/10.1016/j.msea.2016.07.124
25 https://doi.org/10.1016/j.msea.2017.05.065
26 https://doi.org/10.1016/j.mser.2005.07.001
27 https://doi.org/10.1016/j.proeng.2014.12.291
28 https://doi.org/10.1016/j.protcy.2016.03.058
29 https://doi.org/10.1016/j.surfcoat.2015.11.015
30 https://doi.org/10.1016/j.surfcoat.2016.11.060
31 https://doi.org/10.1016/j.wear.2010.01.005
32 https://doi.org/10.1016/j.wear.2010.12.002
33 https://doi.org/10.1016/j.wear.2012.01.009
34 https://doi.org/10.1016/s0010-938x(98)00116-4
35 https://doi.org/10.1016/s0043-1648(03)00121-2
36 https://doi.org/10.1016/s0167-577x(00)00191-9
37 https://doi.org/10.1016/s0261-3069(00)00081-9
38 https://doi.org/10.1016/s0921-5093(02)00199-5
39 https://doi.org/10.2320/matertrans.mra2008192
40 schema:datePublished 2019-03-27
41 schema:datePublishedReg 2019-03-27
42 schema:description Friction stir processing (FSP) is applied to create surface metal–matrix composites (SMMCs). This study aims to develop defect-free surface composites on AA2024 aluminum alloy with structural hardening (T351). It focuses on the effect of the number and direction of FSP passes on the particle distribution and microstructural modifications of the processed region, and their relationship with wear behavior of the composite layers. Results confirm that FSP can fabricate an SMMC with an acceptable homogeneous dispersion of particles. An electron backscatter diffraction (EBSD) technique is used to investigate the evolution of the grain size through the different regions of the friction stir-processed (FSPed) samples, indicating a significant grain size reduction in the nugget zone because of dynamic recrystallization. The surface properties are studied by measuring hardness and resistance to sliding wear. Although SMMC hardness at the nugget is similar to the base material, it demonstrates improved wear resistance. Under the sliding conditions of this study, specific wear rate is reduced significantly (between 24 and 40 pct) with respect to the as-received aluminum alloy. Moreover, the worn tracks indicate the same wear mechanisms operating simultaneously in both materials.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1136292
47 schema:name Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy
48 schema:pagination 1-15
49 schema:productId N1f178a862d6f4769b0b2dfa538d56850
50 N79c0133ba1664932a54cfde1616e2a79
51 Nbeaac14874234e9581e4c5f139e4f248
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113045763
53 https://doi.org/10.1007/s11661-019-05172-6
54 schema:sdDatePublished 2019-04-11T13:19
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ncd2e4196471b449dade13c9369fd4361
57 schema:url https://link.springer.com/10.1007%2Fs11661-019-05172-6
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1f178a862d6f4769b0b2dfa538d56850 schema:name dimensions_id
62 schema:value pub.1113045763
63 rdf:type schema:PropertyValue
64 N4bcc4aba2c6542838c196504abb1ea57 rdf:first Nb67e935cf1f54c429116b5a2c117e09f
65 rdf:rest Ndfe86f9a6ef44708b6c8308dad07b8d0
66 N555b3d770a854a80be90a1b810b1d52b rdf:first N70640570a5174cb2b999b2bc9ac62d37
67 rdf:rest Ne3f96de1ff2c4deab208e78db862ce5e
68 N70640570a5174cb2b999b2bc9ac62d37 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
69 schema:familyName Acuña
70 schema:givenName R.
71 rdf:type schema:Person
72 N79c0133ba1664932a54cfde1616e2a79 schema:name readcube_id
73 schema:value 8f22614b44f92200931355f620e99a8fa1f0655d2c514a94277aa09a29ec6d84
74 rdf:type schema:PropertyValue
75 Nb67e935cf1f54c429116b5a2c117e09f schema:affiliation https://www.grid.ac/institutes/grid.6312.6
76 schema:familyName Abreu
77 schema:givenName C. M.
78 rdf:type schema:Person
79 Nb9c60186e9d84a27aa10eaed20f820b3 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
80 schema:familyName Cristóbal
81 schema:givenName M. J.
82 rdf:type schema:Person
83 Nbeaac14874234e9581e4c5f139e4f248 schema:name doi
84 schema:value 10.1007/s11661-019-05172-6
85 rdf:type schema:PropertyValue
86 Ncd2e4196471b449dade13c9369fd4361 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Ndfe86f9a6ef44708b6c8308dad07b8d0 rdf:first Ne1e40bdc0d614c49acd8e9ea7cf5bbdb
89 rdf:rest rdf:nil
90 Ne1e40bdc0d614c49acd8e9ea7cf5bbdb schema:affiliation https://www.grid.ac/institutes/grid.6312.6
91 schema:familyName Cabeza
92 schema:givenName M.
93 rdf:type schema:Person
94 Ne3f96de1ff2c4deab208e78db862ce5e rdf:first Nb9c60186e9d84a27aa10eaed20f820b3
95 rdf:rest N4bcc4aba2c6542838c196504abb1ea57
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
100 schema:name Materials Engineering
101 rdf:type schema:DefinedTerm
102 sg:journal.1136292 schema:issn 1073-5623
103 1543-1940
104 schema:name Metallurgical and Materials Transactions A
105 rdf:type schema:Periodical
106 sg:pub.10.1007/s11661-999-0224-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033170138
107 https://doi.org/10.1007/s11661-999-0224-4
108 rdf:type schema:CreativeWork
109 sg:pub.10.1023/a:1018653030270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011464057
110 https://doi.org/10.1023/a:1018653030270
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/sia.5207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003844492
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.actamat.2005.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012808805
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.compscitech.2005.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040034229
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.corsci.2009.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045758930
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijfatigue.2016.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024946639
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jmatprotec.2011.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004722813
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jmatprotec.2011.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038115649
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jmrt.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027222980
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jmrt.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000783315
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.matchar.2009.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012596229
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.matdes.2013.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002109255
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.msea.2008.09.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012521689
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.msea.2012.08.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035090009
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.msea.2014.02.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029337383
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.msea.2014.12.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050921423
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.msea.2015.07.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008786345
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.msea.2016.04.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044800476
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.msea.2016.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045643720
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.msea.2016.07.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010888686
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.msea.2017.05.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085432826
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.mser.2005.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015184288
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.proeng.2014.12.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051093489
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.protcy.2016.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038629031
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.surfcoat.2015.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927511
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.surfcoat.2016.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007133729
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.wear.2010.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013422803
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.wear.2010.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000905131
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.wear.2012.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011386683
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0010-938x(98)00116-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031501550
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0043-1648(03)00121-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014521536
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0167-577x(00)00191-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001427429
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0261-3069(00)00081-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052768232
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0921-5093(02)00199-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047830735
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2320/matertrans.mra2008192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028988012
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
181 schema:name ENCOMAT Group, University of Vigo, 36310, Vigo, Spain
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...