Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Julia Kundin, Ali Ramazani, Ulrich Prahl, Christian Haase

ABSTRACT

In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found. More... »

PAGES

2022-2040

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-019-05143-x

DOI

http://dx.doi.org/10.1007/s11661-019-05143-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112158719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ruhr University Bochum", 
          "id": "https://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "ICAMS, Ruhr-University Bochum, 44801, Bochum, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundin", 
        "givenName": "Julia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Mechanical Engineering, MIT, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramazani", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "Institute of Metal Forming, Technische Universit\u00e4t Bergakademie Freiberg, 09599, Freiberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prahl", 
        "givenName": "Ulrich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Steel Institute, RWTH Aachen University, 52062, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haase", 
        "givenName": "Christian", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.05.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001148278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2003.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001334754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2003.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001334754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1352-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003753759", 
          "https://doi.org/10.1007/s11837-015-1352-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.29.868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004259585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.09.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005998246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.09.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005998246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.09.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005998246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006577468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)90162-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012018042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)90162-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012018042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2004.01.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013047331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(01)01932-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016628477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.matsci.32.101901.155803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018359315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2016.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019464180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.061604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019772514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.061604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019772514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.08.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027203242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029275138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.07.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029440655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00110-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033338062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00110-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033338062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1999.6323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035469300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.calphad.2016.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036227362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(93)90120-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036737074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(93)90120-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036737074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037173407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-000-0162-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037860023", 
          "https://doi.org/10.1007/s11663-000-0162-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-000-0162-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037860023", 
          "https://doi.org/10.1007/s11663-000-0162-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addma.2015.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037890756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2006.12.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038264530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-013-1995-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040532734", 
          "https://doi.org/10.1007/s11661-013-1995-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(99)00129-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049925434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051613196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-011-0993-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051657324", 
          "https://doi.org/10.1007/s11661-011-0993-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2013.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2012.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052873176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.4323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.4323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.031603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.031603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085137937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085137937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085137937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-651x/aa7369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085907737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2017.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092179902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2017.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092179902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2017.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092179902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-018-2771-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101127690", 
          "https://doi.org/10.1007/s11837-018-2771-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-018-2771-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101127690", 
          "https://doi.org/10.1007/s11837-018-2771-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2236-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101778931", 
          "https://doi.org/10.1007/s10853-018-2236-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2236-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101778931", 
          "https://doi.org/10.1007/s10853-018-2236-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2236-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101778931", 
          "https://doi.org/10.1007/s10853-018-2236-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2018.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109801177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz\u2013Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-019-05143-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation", 
    "pagination": "2022-2040", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c35b9ab1a4c56bfb6dde66c5b9a7b6671b6d6c62de8dabf8eb2fa7cecdb67fe4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-019-05143-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112158719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-019-05143-x", 
      "https://app.dimensions.ai/details/publication/pub.1112158719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54338_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11661-019-05143-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05143-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05143-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05143-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-019-05143-x'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-019-05143-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc314db0becdb48ccbcef73bcc05b60a6
4 schema:citation sg:pub.10.1007/s10853-018-2236-1
5 sg:pub.10.1007/s11661-011-0993-4
6 sg:pub.10.1007/s11661-013-1995-1
7 sg:pub.10.1007/s11663-000-0162-4
8 sg:pub.10.1007/s11837-015-1352-5
9 sg:pub.10.1007/s11837-018-2771-x
10 https://doi.org/10.1006/jcph.1999.6323
11 https://doi.org/10.1016/0167-2789(93)90120-p
12 https://doi.org/10.1016/0921-5093(94)90162-7
13 https://doi.org/10.1016/j.actamat.2011.11.037
14 https://doi.org/10.1016/j.actamat.2011.12.009
15 https://doi.org/10.1016/j.actamat.2014.08.049
16 https://doi.org/10.1016/j.actamat.2015.05.052
17 https://doi.org/10.1016/j.actamat.2016.07.019
18 https://doi.org/10.1016/j.actamat.2016.07.049
19 https://doi.org/10.1016/j.actamat.2016.09.055
20 https://doi.org/10.1016/j.actamat.2016.10.004
21 https://doi.org/10.1016/j.actamat.2016.11.018
22 https://doi.org/10.1016/j.actamat.2017.05.003
23 https://doi.org/10.1016/j.addma.2015.12.005
24 https://doi.org/10.1016/j.calphad.2016.11.006
25 https://doi.org/10.1016/j.jcrysgro.2003.09.017
26 https://doi.org/10.1016/j.jcrysgro.2006.12.064
27 https://doi.org/10.1016/j.jcrysgro.2016.01.036
28 https://doi.org/10.1016/j.matchar.2013.08.010
29 https://doi.org/10.1016/j.matdes.2018.10.051
30 https://doi.org/10.1016/j.msea.2004.01.059
31 https://doi.org/10.1016/j.physd.2012.10.004
32 https://doi.org/10.1016/j.pmatsci.2017.10.001
33 https://doi.org/10.1016/s0022-0248(01)01932-7
34 https://doi.org/10.1016/s0167-2789(99)00129-3
35 https://doi.org/10.1016/s1359-6454(03)00110-1
36 https://doi.org/10.1088/1361-651x/aa7369
37 https://doi.org/10.1103/physreve.57.4323
38 https://doi.org/10.1103/physreve.70.061604
39 https://doi.org/10.1103/physreve.79.031603
40 https://doi.org/10.1146/annurev.matsci.32.101901.155803
41 https://doi.org/10.2355/isijinternational.29.868
42 schema:datePublished 2019-04
43 schema:datePublishedReg 2019-04-01
44 schema:description In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N2181cc8abbfb4ec0b4678ad3ec9790b5
49 Na72612b8141649a2b9ea8e6482321a3a
50 sg:journal.1136292
51 schema:name Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation
52 schema:pagination 2022-2040
53 schema:productId N309685b6b67643388b3bc923e53199b9
54 N56917f75d5a3492faac15745889b4664
55 Nd9ac3db2f3e442879a4f5fb02db57a95
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158719
57 https://doi.org/10.1007/s11661-019-05143-x
58 schema:sdDatePublished 2019-04-11T10:22
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N808813e8f4d84f3ba82be8ee5583016b
61 schema:url https://link.springer.com/10.1007%2Fs11661-019-05143-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N16285a2f65fb42b6a854713a39edc6bb rdf:first N4cafd093b6e349dcbcf2bdb3f9947c5f
66 rdf:rest rdf:nil
67 N2181cc8abbfb4ec0b4678ad3ec9790b5 schema:issueNumber 4
68 rdf:type schema:PublicationIssue
69 N309685b6b67643388b3bc923e53199b9 schema:name doi
70 schema:value 10.1007/s11661-019-05143-x
71 rdf:type schema:PropertyValue
72 N4cafd093b6e349dcbcf2bdb3f9947c5f schema:affiliation https://www.grid.ac/institutes/grid.1957.a
73 schema:familyName Haase
74 schema:givenName Christian
75 rdf:type schema:Person
76 N56917f75d5a3492faac15745889b4664 schema:name readcube_id
77 schema:value c35b9ab1a4c56bfb6dde66c5b9a7b6671b6d6c62de8dabf8eb2fa7cecdb67fe4
78 rdf:type schema:PropertyValue
79 N687382a5cf4f47dd903ccd54d2ea9f58 rdf:first Nd8d3def2969043529e903dcbe21cc05b
80 rdf:rest N16285a2f65fb42b6a854713a39edc6bb
81 N808813e8f4d84f3ba82be8ee5583016b schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Na72612b8141649a2b9ea8e6482321a3a schema:volumeNumber 50
84 rdf:type schema:PublicationVolume
85 Nb1790232346043fb8a18bb218f4e5d50 schema:affiliation https://www.grid.ac/institutes/grid.5570.7
86 schema:familyName Kundin
87 schema:givenName Julia
88 rdf:type schema:Person
89 Nc314db0becdb48ccbcef73bcc05b60a6 rdf:first Nb1790232346043fb8a18bb218f4e5d50
90 rdf:rest Nc7e6027ccdb94b10b1bdc94fb6ecbdd2
91 Nc7e6027ccdb94b10b1bdc94fb6ecbdd2 rdf:first Ndaf8cf0ca1a94c83b427042a80abbe22
92 rdf:rest N687382a5cf4f47dd903ccd54d2ea9f58
93 Nd8d3def2969043529e903dcbe21cc05b schema:affiliation https://www.grid.ac/institutes/grid.6862.a
94 schema:familyName Prahl
95 schema:givenName Ulrich
96 rdf:type schema:Person
97 Nd9ac3db2f3e442879a4f5fb02db57a95 schema:name dimensions_id
98 schema:value pub.1112158719
99 rdf:type schema:PropertyValue
100 Ndaf8cf0ca1a94c83b427042a80abbe22 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
101 schema:familyName Ramazani
102 schema:givenName Ali
103 rdf:type schema:Person
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1136292 schema:issn 1073-5623
111 1543-1940
112 schema:name Metallurgical and Materials Transactions A
113 rdf:type schema:Periodical
114 sg:pub.10.1007/s10853-018-2236-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101778931
115 https://doi.org/10.1007/s10853-018-2236-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11661-011-0993-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051657324
118 https://doi.org/10.1007/s11661-011-0993-4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11661-013-1995-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040532734
121 https://doi.org/10.1007/s11661-013-1995-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11663-000-0162-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037860023
124 https://doi.org/10.1007/s11663-000-0162-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11837-015-1352-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003753759
127 https://doi.org/10.1007/s11837-015-1352-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11837-018-2771-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101127690
130 https://doi.org/10.1007/s11837-018-2771-x
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/jcph.1999.6323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035469300
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0167-2789(93)90120-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1036737074
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0921-5093(94)90162-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012018042
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.actamat.2011.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051613196
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.actamat.2011.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029275138
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.actamat.2014.08.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203242
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.actamat.2015.05.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001148278
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.actamat.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006577468
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.actamat.2016.07.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029440655
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.actamat.2016.09.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005998246
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.actamat.2016.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049925434
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.actamat.2016.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037173407
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.actamat.2017.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085137937
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.addma.2015.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037890756
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.calphad.2016.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036227362
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jcrysgro.2003.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001334754
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jcrysgro.2006.12.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038264530
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jcrysgro.2016.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019464180
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.matchar.2013.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740895
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.matdes.2018.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109801177
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.msea.2004.01.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013047331
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.physd.2012.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052873176
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.pmatsci.2017.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092179902
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0022-0248(01)01932-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016628477
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0167-2789(99)00129-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042307945
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s1359-6454(03)00110-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033338062
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/1361-651x/aa7369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085907737
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.57.4323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722197
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.70.061604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019772514
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physreve.79.031603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060738658
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1146/annurev.matsci.32.101901.155803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018359315
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2355/isijinternational.29.868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004259585
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
197 schema:name Department of Mechanical Engineering, MIT, 02139, Cambridge, MA, USA
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
200 schema:name Steel Institute, RWTH Aachen University, 52062, Aachen, Germany
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.5570.7 schema:alternateName Ruhr University Bochum
203 schema:name ICAMS, Ruhr-University Bochum, 44801, Bochum, Germany
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.6862.a schema:alternateName Freiberg University Of Mining And Technology
206 schema:name Institute of Metal Forming, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...