Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-02

AUTHORS

Xiangyi Ren, Hanguang Fu, Jiandong Xing, Shuli Tang

ABSTRACT

The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0 wt pct B-0.4 wt pct C-6.0 wt pct Cr-4.0 wt pct Mo-x wt pct Al-1.0 wt pct Si-1.0 wt pct V-0.5 wt pct Mn (x = 0.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix α-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M = Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050 °C, 1100 °C, and 1150 °C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0 wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150 °C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600 °C for 1 hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0 wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability. More... »

PAGES

5636-5645

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3

DOI

http://dx.doi.org/10.1007/s11661-018-4861-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105972406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Xiangyi", 
        "id": "sg:person.010512126032.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010512126032.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute of Advanced Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Research Institute of Advanced Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Hanguang", 
        "id": "sg:person.016117416053.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117416053.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Jiandong", 
        "id": "sg:person.013310307055.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310307055.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Shuli", 
        "id": "sg:person.07633554635.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633554635.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-005-0141-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019310525", 
          "https://doi.org/10.1007/s11661-005-0141-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-012-6003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009862888", 
          "https://doi.org/10.1007/s12540-012-6003-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-015-1847-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013919629", 
          "https://doi.org/10.1007/s11665-015-1847-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2017.304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091107993", 
          "https://doi.org/10.1557/jmr.2017.304"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-02", 
    "datePublishedReg": "2018-08-02", 
    "description": "The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0\u00a0wt pct B-0.4\u00a0wt pct C-6.0\u00a0wt pct Cr-4.0\u00a0wt pct Mo-x\u00a0wt pct Al-1.0\u00a0wt pct Si-1.0\u00a0wt pct\u00a0V-0.5\u00a0wt pct Mn (x\u00a0=\u00a00.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix \u03b1-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M\u00a0=\u00a0Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050\u00a0\u00b0C, 1100\u00a0\u00b0C, and 1150\u00a0\u00b0C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0\u00a0wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150\u00a0\u00b0C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600\u00a0\u00b0C for 1\u00a0hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0\u00a0wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-018-4861-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8271211", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8259874", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "high-boron high-speed steel", 
      "high-speed steel", 
      "hardness of alloys", 
      "eutectic borocarbide", 
      "wt pct aluminum", 
      "martensite matrix", 
      "aluminum addition", 
      "aluminum content", 
      "pct aluminum", 
      "microstructure of alloys", 
      "hardness testing results", 
      "continuous network structure", 
      "High-Boron", 
      "heat-treated samples", 
      "alloy matrix", 
      "speed steel", 
      "alloy hardness", 
      "alloy microstructure", 
      "cast microstructure", 
      "tempering stability", 
      "steel", 
      "alloy", 
      "microstructure", 
      "quenching temperature", 
      "hardness", 
      "aluminum", 
      "matrix \u03b1", 
      "tempering", 
      "testing results", 
      "experimental results", 
      "borocarbides", 
      "present work", 
      "wt", 
      "effect of aluminum", 
      "phase type", 
      "Si\u20131.0", 
      "B-0.4", 
      "Cr-4.0", 
      "matrix", 
      "C\u20136.0", 
      "Al-1.0", 
      "morphology", 
      "network structure", 
      "higher values", 
      "resistance", 
      "temper", 
      "refining", 
      "temperature", 
      "content", 
      "stability", 
      "Fe", 
      "results", 
      "structure", 
      "effect", 
      "addition", 
      "work", 
      "size", 
      "quenching", 
      "Mo", 
      "Mn", 
      "variation", 
      "increase", 
      "values", 
      "types", 
      "samples", 
      "apparent change", 
      "changes", 
      "hours", 
      "rounds", 
      "wt pct Cr-4.0", 
      "pct Cr-4.0", 
      "V-0.5", 
      "nodulizing of borocarbide", 
      "nodulizing", 
      "borocarbide morphology", 
      "good tempering stability", 
      "Temper Softening Resistance", 
      "Softening Resistance"
    ], 
    "name": "Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel", 
    "pagination": "5636-5645", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105972406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-018-4861-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-018-4861-3", 
      "https://app.dimensions.ai/details/publication/pub.1105972406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_781.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-018-4861-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      107 URIs      95 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-018-4861-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N14570e18587c4b16a21d41d163ff9c49
4 schema:citation sg:pub.10.1007/s11661-005-0141-0
5 sg:pub.10.1007/s11665-015-1847-9
6 sg:pub.10.1007/s12540-012-6003-6
7 sg:pub.10.1557/jmr.2017.304
8 schema:datePublished 2018-08-02
9 schema:datePublishedReg 2018-08-02
10 schema:description The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0 wt pct B-0.4 wt pct C-6.0 wt pct Cr-4.0 wt pct Mo-x wt pct Al-1.0 wt pct Si-1.0 wt pct V-0.5 wt pct Mn (x = 0.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix α-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M = Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050 °C, 1100 °C, and 1150 °C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0 wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150 °C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600 °C for 1 hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0 wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N10f216f10365432a81382affac425614
15 N492864f8b3c2483baa2713f616adcb30
16 sg:journal.1136292
17 schema:keywords Al-1.0
18 B-0.4
19 Cr-4.0
20 C–6.0
21 Fe
22 High-Boron
23 Mn
24 Mo
25 Si–1.0
26 Softening Resistance
27 Temper Softening Resistance
28 V-0.5
29 addition
30 alloy
31 alloy hardness
32 alloy matrix
33 alloy microstructure
34 aluminum
35 aluminum addition
36 aluminum content
37 apparent change
38 borocarbide morphology
39 borocarbides
40 cast microstructure
41 changes
42 content
43 continuous network structure
44 effect
45 effect of aluminum
46 eutectic borocarbide
47 experimental results
48 good tempering stability
49 hardness
50 hardness of alloys
51 hardness testing results
52 heat-treated samples
53 high-boron high-speed steel
54 high-speed steel
55 higher values
56 hours
57 increase
58 martensite matrix
59 matrix
60 matrix α
61 microstructure
62 microstructure of alloys
63 morphology
64 network structure
65 nodulizing
66 nodulizing of borocarbide
67 pct Cr-4.0
68 pct aluminum
69 phase type
70 present work
71 quenching
72 quenching temperature
73 refining
74 resistance
75 results
76 rounds
77 samples
78 size
79 speed steel
80 stability
81 steel
82 structure
83 temper
84 temperature
85 tempering
86 tempering stability
87 testing results
88 types
89 values
90 variation
91 work
92 wt
93 wt pct Cr-4.0
94 wt pct aluminum
95 schema:name Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel
96 schema:pagination 5636-5645
97 schema:productId N2d1feba464dd46e0b266c9d984bc8252
98 N678e3b923f97489eb11668831262994a
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105972406
100 https://doi.org/10.1007/s11661-018-4861-3
101 schema:sdDatePublished 2021-12-01T19:42
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Ne9184d8188ae40ab9c9cc62ef12b510e
104 schema:url https://doi.org/10.1007/s11661-018-4861-3
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N10f216f10365432a81382affac425614 schema:volumeNumber 49
109 rdf:type schema:PublicationVolume
110 N14570e18587c4b16a21d41d163ff9c49 rdf:first sg:person.010512126032.78
111 rdf:rest N63a9452c582945dab9d00edc6d4f5e67
112 N2d1feba464dd46e0b266c9d984bc8252 schema:name dimensions_id
113 schema:value pub.1105972406
114 rdf:type schema:PropertyValue
115 N3658790dca344d3c907f0fdd2f516a84 rdf:first sg:person.07633554635.95
116 rdf:rest rdf:nil
117 N492864f8b3c2483baa2713f616adcb30 schema:issueNumber 11
118 rdf:type schema:PublicationIssue
119 N63a9452c582945dab9d00edc6d4f5e67 rdf:first sg:person.016117416053.11
120 rdf:rest N9163f3125963489d9db919b14d71d7e5
121 N678e3b923f97489eb11668831262994a schema:name doi
122 schema:value 10.1007/s11661-018-4861-3
123 rdf:type schema:PropertyValue
124 N9163f3125963489d9db919b14d71d7e5 rdf:first sg:person.013310307055.06
125 rdf:rest N3658790dca344d3c907f0fdd2f516a84
126 Ne9184d8188ae40ab9c9cc62ef12b510e schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
129 schema:name Engineering
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
132 schema:name Materials Engineering
133 rdf:type schema:DefinedTerm
134 sg:grant.8259874 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-018-4861-3
135 rdf:type schema:MonetaryGrant
136 sg:grant.8271211 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-018-4861-3
137 rdf:type schema:MonetaryGrant
138 sg:journal.1136292 schema:issn 1073-5623
139 1543-1940
140 schema:name Metallurgical and Materials Transactions A
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.010512126032.78 schema:affiliation grid-institutes:grid.43169.39
144 schema:familyName Ren
145 schema:givenName Xiangyi
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010512126032.78
147 rdf:type schema:Person
148 sg:person.013310307055.06 schema:affiliation grid-institutes:grid.43169.39
149 schema:familyName Xing
150 schema:givenName Jiandong
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310307055.06
152 rdf:type schema:Person
153 sg:person.016117416053.11 schema:affiliation grid-institutes:grid.28703.3e
154 schema:familyName Fu
155 schema:givenName Hanguang
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117416053.11
157 rdf:type schema:Person
158 sg:person.07633554635.95 schema:affiliation grid-institutes:grid.43169.39
159 schema:familyName Tang
160 schema:givenName Shuli
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633554635.95
162 rdf:type schema:Person
163 sg:pub.10.1007/s11661-005-0141-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019310525
164 https://doi.org/10.1007/s11661-005-0141-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s11665-015-1847-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919629
167 https://doi.org/10.1007/s11665-015-1847-9
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s12540-012-6003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009862888
170 https://doi.org/10.1007/s12540-012-6003-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1557/jmr.2017.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091107993
173 https://doi.org/10.1557/jmr.2017.304
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.28703.3e schema:alternateName Research Institute of Advanced Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, P.R. China
176 schema:name Research Institute of Advanced Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, P.R. China
177 rdf:type schema:Organization
178 grid-institutes:grid.43169.39 schema:alternateName State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, 28 Xianning West Road, 710049, Xi’an, Shaanxi, P.R. China
179 schema:name State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, 28 Xianning West Road, 710049, Xi’an, Shaanxi, P.R. China
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...