Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Xiangyi Ren, Hanguang Fu, Jiandong Xing, Shuli Tang

ABSTRACT

The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0 wt pct B-0.4 wt pct C-6.0 wt pct Cr-4.0 wt pct Mo-x wt pct Al-1.0 wt pct Si-1.0 wt pct V-0.5 wt pct Mn (x = 0.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix α-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M = Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050 °C, 1100 °C, and 1150 °C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0 wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150 °C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600 °C for 1 hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0 wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability. More... »

PAGES

5636-5645

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3

DOI

http://dx.doi.org/10.1007/s11661-018-4861-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105972406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Xiangyi", 
        "id": "sg:person.010512126032.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010512126032.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Research Institute of Advanced Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Hanguang", 
        "id": "sg:person.016117416053.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117416053.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Jiandong", 
        "id": "sg:person.013310307055.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310307055.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 28 Xianning West Road, 710049, Xi\u2019an, Shaanxi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Shuli", 
        "id": "sg:person.07633554635.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633554635.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002422584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2009.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005613901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2004.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006312985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006518080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.10.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009019489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-012-6003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009862888", 
          "https://doi.org/10.1007/s12540-012-6003-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2007.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013300692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-015-1847-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013919629", 
          "https://doi.org/10.1007/s11665-015-1847-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.10.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0141-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019310525", 
          "https://doi.org/10.1007/s11661-005-0141-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0141-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019310525", 
          "https://doi.org/10.1007/s11661-005-0141-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mawe.201200058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020211029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.11.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022140394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023564029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026096417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029528460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037433190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/030192304225018208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038174896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeurceramsoc.2005.01.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041557797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/026708309x12454008169302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042501622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042503918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.08.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044289878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.08.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049224013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(94)90155-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053259537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(94)90155-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053259537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053555485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00449-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053670558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00449-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053670558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.548.538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072026841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2017.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090954031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2017.304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091107993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.08.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091501823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.09.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092060553"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0 wt pct B-0.4 wt pct C-6.0 wt pct Cr-4.0 wt pct Mo-x wt pct Al-1.0 wt pct Si-1.0 wt pct V-0.5 wt pct Mn (x = 0.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix \u03b1-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M = Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050 \u00b0C, 1100 \u00b0C, and 1150 \u00b0C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0 wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150 \u00b0C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600 \u00b0C for 1 hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0 wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-018-4861-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel", 
    "pagination": "5636-5645", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f844314b4010b020eb0f00418b531672dadb67276b97365051946b29e27b721c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-018-4861-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105972406"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-018-4861-3", 
      "https://app.dimensions.ai/details/publication/pub.1105972406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11661-018-4861-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-018-4861-3'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-018-4861-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N303130cdfb2b4ccd8a1c78bd7c2d3254
4 schema:citation sg:pub.10.1007/s11661-005-0141-0
5 sg:pub.10.1007/s11665-015-1847-9
6 sg:pub.10.1007/s12540-012-6003-6
7 https://doi.org/10.1002/mawe.201200058
8 https://doi.org/10.1016/0043-1648(94)90155-4
9 https://doi.org/10.1016/j.actamat.2011.11.004
10 https://doi.org/10.1016/j.actamat.2016.08.009
11 https://doi.org/10.1016/j.jallcom.2013.08.045
12 https://doi.org/10.1016/j.jallcom.2015.11.171
13 https://doi.org/10.1016/j.jeurceramsoc.2005.01.053
14 https://doi.org/10.1016/j.jmatprotec.2012.07.007
15 https://doi.org/10.1016/j.matchar.2007.10.010
16 https://doi.org/10.1016/j.matchar.2017.08.001
17 https://doi.org/10.1016/j.matdes.2004.09.027
18 https://doi.org/10.1016/j.matdes.2010.01.003
19 https://doi.org/10.1016/j.matdes.2011.10.043
20 https://doi.org/10.1016/j.matdes.2014.02.032
21 https://doi.org/10.1016/j.matdes.2014.03.011
22 https://doi.org/10.1016/j.matdes.2015.03.053
23 https://doi.org/10.1016/j.matdes.2015.08.157
24 https://doi.org/10.1016/j.matdes.2017.08.062
25 https://doi.org/10.1016/j.msea.2010.09.092
26 https://doi.org/10.1016/j.msea.2011.10.118
27 https://doi.org/10.1016/j.msea.2017.09.135
28 https://doi.org/10.1016/j.wear.2009.03.017
29 https://doi.org/10.1016/s0921-5093(02)00449-5
30 https://doi.org/10.1179/026708309x12454008169302
31 https://doi.org/10.1179/030192304225018208
32 https://doi.org/10.1557/jmr.2017.304
33 https://doi.org/10.4028/www.scientific.net/amr.548.538
34 schema:datePublished 2018-11
35 schema:datePublishedReg 2018-11-01
36 schema:description The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0 wt pct B-0.4 wt pct C-6.0 wt pct Cr-4.0 wt pct Mo-x wt pct Al-1.0 wt pct Si-1.0 wt pct V-0.5 wt pct Mn (x = 0.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix α-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M = Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050 °C, 1100 °C, and 1150 °C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0 wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150 °C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600 °C for 1 hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0 wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N29757e2ed7ed487595c7f3d8b3ee21f3
41 N876ecbce0dac46b5a617c06e07a69a45
42 sg:journal.1136292
43 schema:name Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel
44 schema:pagination 5636-5645
45 schema:productId N2a78e4aca31f466b9bb005867f69d46e
46 N606cf3d46fc54bd5a6c421941e40cf30
47 Nbc1f2db9f7024cbc84831a25843b2d59
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105972406
49 https://doi.org/10.1007/s11661-018-4861-3
50 schema:sdDatePublished 2019-04-11T01:13
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nd5592ba8964741518401894d1d303daf
53 schema:url https://link.springer.com/10.1007%2Fs11661-018-4861-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N29757e2ed7ed487595c7f3d8b3ee21f3 schema:issueNumber 11
58 rdf:type schema:PublicationIssue
59 N2a78e4aca31f466b9bb005867f69d46e schema:name dimensions_id
60 schema:value pub.1105972406
61 rdf:type schema:PropertyValue
62 N2cc95b57e4fc4baebbb38ea33179ee23 rdf:first sg:person.07633554635.95
63 rdf:rest rdf:nil
64 N303130cdfb2b4ccd8a1c78bd7c2d3254 rdf:first sg:person.010512126032.78
65 rdf:rest N38031d0fd1f74e0399241ccefd4b72db
66 N38031d0fd1f74e0399241ccefd4b72db rdf:first sg:person.016117416053.11
67 rdf:rest Nddf4ca01d9294b5882f8a2be146009a9
68 N606cf3d46fc54bd5a6c421941e40cf30 schema:name readcube_id
69 schema:value f844314b4010b020eb0f00418b531672dadb67276b97365051946b29e27b721c
70 rdf:type schema:PropertyValue
71 N876ecbce0dac46b5a617c06e07a69a45 schema:volumeNumber 49
72 rdf:type schema:PublicationVolume
73 Nbc1f2db9f7024cbc84831a25843b2d59 schema:name doi
74 schema:value 10.1007/s11661-018-4861-3
75 rdf:type schema:PropertyValue
76 Nd5592ba8964741518401894d1d303daf schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nddf4ca01d9294b5882f8a2be146009a9 rdf:first sg:person.013310307055.06
79 rdf:rest N2cc95b57e4fc4baebbb38ea33179ee23
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136292 schema:issn 1073-5623
87 1543-1940
88 schema:name Metallurgical and Materials Transactions A
89 rdf:type schema:Periodical
90 sg:person.010512126032.78 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
91 schema:familyName Ren
92 schema:givenName Xiangyi
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010512126032.78
94 rdf:type schema:Person
95 sg:person.013310307055.06 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
96 schema:familyName Xing
97 schema:givenName Jiandong
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310307055.06
99 rdf:type schema:Person
100 sg:person.016117416053.11 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
101 schema:familyName Fu
102 schema:givenName Hanguang
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117416053.11
104 rdf:type schema:Person
105 sg:person.07633554635.95 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
106 schema:familyName Tang
107 schema:givenName Shuli
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633554635.95
109 rdf:type schema:Person
110 sg:pub.10.1007/s11661-005-0141-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019310525
111 https://doi.org/10.1007/s11661-005-0141-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11665-015-1847-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919629
114 https://doi.org/10.1007/s11665-015-1847-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s12540-012-6003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009862888
117 https://doi.org/10.1007/s12540-012-6003-6
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/mawe.201200058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020211029
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0043-1648(94)90155-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053259537
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.actamat.2011.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023564029
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.actamat.2016.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042503918
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jallcom.2013.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049224013
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jallcom.2015.11.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022140394
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jeurceramsoc.2005.01.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041557797
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmatprotec.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026096417
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.matchar.2007.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013300692
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.matchar.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090954031
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.matdes.2004.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006312985
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.matdes.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053555485
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.matdes.2011.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009019489
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.matdes.2014.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002422584
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.matdes.2014.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006518080
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.matdes.2015.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029528460
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.matdes.2015.08.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044289878
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.matdes.2017.08.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091501823
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.msea.2010.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037433190
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.msea.2011.10.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018928985
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.msea.2017.09.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092060553
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.wear.2009.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005613901
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0921-5093(02)00449-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053670558
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1179/026708309x12454008169302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042501622
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1179/030192304225018208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038174896
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1557/jmr.2017.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091107993
170 rdf:type schema:CreativeWork
171 https://doi.org/10.4028/www.scientific.net/amr.548.538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072026841
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.28703.3e schema:alternateName Beijing University of Technology
174 schema:name Research Institute of Advanced Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, P.R. China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
177 schema:name State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, 28 Xianning West Road, 710049, Xi’an, Shaanxi, P.R. China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...