Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Sandeep Sahu, Prabhat Chand Yadav, Shashank Shekhar

ABSTRACT

In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective “grain boundary engineering”; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 (~ 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 (~ 1 pct) boundaries, as desired. The process also leads to so-called “triple junction engineering” with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network. More... »

PAGES

628-643

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-017-4431-0

DOI

http://dx.doi.org/10.1007/s11661-017-4431-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099688092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Grain Boundary Engineering Lab, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahu", 
        "givenName": "Sandeep", 
        "id": "sg:person.011502016267.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011502016267.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Grain Boundary Engineering Lab, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadav", 
        "givenName": "Prabhat Chand", 
        "id": "sg:person.016642466320.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642466320.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Grain Boundary Engineering Lab, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shekhar", 
        "givenName": "Shashank", 
        "id": "sg:person.012327736520.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327736520.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2009.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000394308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)00422-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000470788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)00422-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000470788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-998-0249-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001768230", 
          "https://doi.org/10.1007/s11837-998-0249-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(95)00396-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004115349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(89)90480-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005265384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(89)90480-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005265384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(00)00045-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006664374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5006/0010-9312-31.9.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007204244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90124-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008130539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90124-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008130539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnucmat.2013.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008507016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6250-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008889827", 
          "https://doi.org/10.1007/s10853-012-6250-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418619908210299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009710101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786435.2010.481272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010018548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418618908209838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014592684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-716x(95)00420-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014920270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(93)90306-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016237445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(93)90306-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016237445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016466942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016466942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788127", 
          "https://doi.org/10.1007/bf02665051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788127", 
          "https://doi.org/10.1007/bf02665051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(72)90256-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018350157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(72)90256-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018350157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/026708309x12601952777747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019092071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.11.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022033544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-010-0447-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022716778", 
          "https://doi.org/10.1007/s11661-010-0447-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029770810", 
          "https://doi.org/10.1007/s11661-998-0214-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029770810", 
          "https://doi.org/10.1007/s11661-998-0214-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6462(96)00153-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033597771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6462(96)00234-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034550761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034608029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767301000654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034685012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(01)00064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035419425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035788668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(99)00277-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035849446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12666-016-0834-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036804538", 
          "https://doi.org/10.1007/s12666-016-0834-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1991.7.11.985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036846856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(97)00486-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037267703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2005.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038570821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(02)00064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038700344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(02)00064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038700344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfailanal.2007.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039094270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(02)00447-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039562236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(02)00447-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039562236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90125-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040231547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90125-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040231547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.12.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040288911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0007-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045078948", 
          "https://doi.org/10.1007/s11661-005-0007-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0007-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045078948", 
          "https://doi.org/10.1007/s11661-005-0007-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)90925-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045763997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)90925-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045763997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(66)90168-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045910887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(66)90168-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045910887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2012.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046880838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048457491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.12.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049330961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050428892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786435.2017.1322730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085349756"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-\u03a3 CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective \u201cgrain boundary engineering\u201d; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-\u03a3 CSL boundaries, a dominant fraction of which was from \u03a33 (~ 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of \u03a31 (~ 1 pct) boundaries, as desired. The process also leads to so-called \u201ctriple junction engineering\u201d with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-017-4431-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy", 
    "pagination": "628-643", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5db282e644df5d641ce04366c1bfcca814dca5baec4d8f758761dbd4c968d50c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-017-4431-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099688092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-017-4431-0", 
      "https://app.dimensions.ai/details/publication/pub.1099688092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11661-017-4431-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4431-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4431-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4431-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4431-0'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-017-4431-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N61a8c9f8f9114f0aa6ac6c1df47bda72
4 schema:citation sg:pub.10.1007/bf02665051
5 sg:pub.10.1007/s10853-012-6250-4
6 sg:pub.10.1007/s11661-005-0007-5
7 sg:pub.10.1007/s11661-010-0447-4
8 sg:pub.10.1007/s11661-998-0214-y
9 sg:pub.10.1007/s11837-998-0249-y
10 sg:pub.10.1007/s12666-016-0834-7
11 https://doi.org/10.1016/0001-6160(66)90168-4
12 https://doi.org/10.1016/0001-6160(84)90124-x
13 https://doi.org/10.1016/0001-6160(84)90125-1
14 https://doi.org/10.1016/0036-9748(89)90480-8
15 https://doi.org/10.1016/0039-6028(72)90256-7
16 https://doi.org/10.1016/0921-5093(93)90306-y
17 https://doi.org/10.1016/0921-5093(94)90925-3
18 https://doi.org/10.1016/0956-7151(93)90085-7
19 https://doi.org/10.1016/0956-7151(94)00422-6
20 https://doi.org/10.1016/0956-716x(95)00420-z
21 https://doi.org/10.1016/1359-6454(95)00396-7
22 https://doi.org/10.1016/1359-6462(96)00153-4
23 https://doi.org/10.1016/1359-6462(96)00234-5
24 https://doi.org/10.1016/j.actamat.2004.05.031
25 https://doi.org/10.1016/j.actamat.2005.11.046
26 https://doi.org/10.1016/j.actamat.2007.03.021
27 https://doi.org/10.1016/j.corsci.2008.10.006
28 https://doi.org/10.1016/j.corsci.2012.12.021
29 https://doi.org/10.1016/j.engfailanal.2007.01.009
30 https://doi.org/10.1016/j.jmatprotec.2016.10.014
31 https://doi.org/10.1016/j.jnucmat.2013.07.061
32 https://doi.org/10.1016/j.msea.2009.06.018
33 https://doi.org/10.1016/j.msea.2014.12.046
34 https://doi.org/10.1016/j.msea.2014.12.112
35 https://doi.org/10.1016/j.scriptamat.2004.05.016
36 https://doi.org/10.1016/j.scriptamat.2005.11.052
37 https://doi.org/10.1016/s1359-6454(00)00045-8
38 https://doi.org/10.1016/s1359-6454(01)00064-7
39 https://doi.org/10.1016/s1359-6454(02)00064-2
40 https://doi.org/10.1016/s1359-6454(02)00447-0
41 https://doi.org/10.1016/s1359-6454(99)00277-3
42 https://doi.org/10.1016/s1359-6462(97)00486-7
43 https://doi.org/10.1080/01418618908209838
44 https://doi.org/10.1080/01418619908210299
45 https://doi.org/10.1080/14786435.2010.481272
46 https://doi.org/10.1080/14786435.2017.1322730
47 https://doi.org/10.1107/s0108767301000654
48 https://doi.org/10.1179/026708309x12601952777747
49 https://doi.org/10.1179/mst.1991.7.11.985
50 https://doi.org/10.5006/0010-9312-31.9.327
51 schema:datePublished 2018-02
52 schema:datePublishedReg 2018-02-01
53 schema:description In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective “grain boundary engineering”; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 (~ 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 (~ 1 pct) boundaries, as desired. The process also leads to so-called “triple junction engineering” with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N3e73a4028dab4cfa82737091c4760c82
58 N9d85799269134eb8bab8953316a01c5b
59 sg:journal.1136292
60 schema:name Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy
61 schema:pagination 628-643
62 schema:productId Na11e4d39c363457698de01e6eb0151cb
63 Nbb681a99798f4bfd887ed855d660b666
64 Nf7540ecb7bae49a493e22b2f42b039e2
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099688092
66 https://doi.org/10.1007/s11661-017-4431-0
67 schema:sdDatePublished 2019-04-10T16:35
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N4bc8e60c46b842a9949137136f0acdd0
70 schema:url http://link.springer.com/10.1007/s11661-017-4431-0
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N3e73a4028dab4cfa82737091c4760c82 schema:volumeNumber 49
75 rdf:type schema:PublicationVolume
76 N4bc8e60c46b842a9949137136f0acdd0 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N61a8c9f8f9114f0aa6ac6c1df47bda72 rdf:first sg:person.011502016267.82
79 rdf:rest Nced1bb08b8f640898fa3edeed1156469
80 N9b568adcc5c143ce9d9625b2e5a7723c rdf:first sg:person.012327736520.26
81 rdf:rest rdf:nil
82 N9d85799269134eb8bab8953316a01c5b schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 Na11e4d39c363457698de01e6eb0151cb schema:name doi
85 schema:value 10.1007/s11661-017-4431-0
86 rdf:type schema:PropertyValue
87 Nbb681a99798f4bfd887ed855d660b666 schema:name readcube_id
88 schema:value 5db282e644df5d641ce04366c1bfcca814dca5baec4d8f758761dbd4c968d50c
89 rdf:type schema:PropertyValue
90 Nced1bb08b8f640898fa3edeed1156469 rdf:first sg:person.016642466320.88
91 rdf:rest N9b568adcc5c143ce9d9625b2e5a7723c
92 Nf7540ecb7bae49a493e22b2f42b039e2 schema:name dimensions_id
93 schema:value pub.1099688092
94 rdf:type schema:PropertyValue
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1136292 schema:issn 1073-5623
102 1543-1940
103 schema:name Metallurgical and Materials Transactions A
104 rdf:type schema:Periodical
105 sg:person.011502016267.82 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
106 schema:familyName Sahu
107 schema:givenName Sandeep
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011502016267.82
109 rdf:type schema:Person
110 sg:person.012327736520.26 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
111 schema:familyName Shekhar
112 schema:givenName Shashank
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327736520.26
114 rdf:type schema:Person
115 sg:person.016642466320.88 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
116 schema:familyName Yadav
117 schema:givenName Prabhat Chand
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642466320.88
119 rdf:type schema:Person
120 sg:pub.10.1007/bf02665051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788127
121 https://doi.org/10.1007/bf02665051
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10853-012-6250-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008889827
124 https://doi.org/10.1007/s10853-012-6250-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11661-005-0007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045078948
127 https://doi.org/10.1007/s11661-005-0007-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11661-010-0447-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022716778
130 https://doi.org/10.1007/s11661-010-0447-4
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11661-998-0214-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029770810
133 https://doi.org/10.1007/s11661-998-0214-y
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11837-998-0249-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001768230
136 https://doi.org/10.1007/s11837-998-0249-y
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s12666-016-0834-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036804538
139 https://doi.org/10.1007/s12666-016-0834-7
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0001-6160(66)90168-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045910887
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0001-6160(84)90124-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008130539
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0001-6160(84)90125-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040231547
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0036-9748(89)90480-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005265384
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0039-6028(72)90256-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018350157
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0921-5093(93)90306-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016237445
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0921-5093(94)90925-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045763997
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0956-7151(93)90085-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016466942
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0956-7151(94)00422-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000470788
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0956-716x(95)00420-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014920270
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/1359-6454(95)00396-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004115349
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/1359-6462(96)00153-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033597771
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/1359-6462(96)00234-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034550761
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.actamat.2004.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048457491
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.actamat.2005.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022033544
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.actamat.2007.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050428892
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.corsci.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334421
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.corsci.2012.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046880838
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.engfailanal.2007.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039094270
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jmatprotec.2016.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035788668
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jnucmat.2013.07.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008507016
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.msea.2009.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000394308
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.msea.2014.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049330961
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.msea.2014.12.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040288911
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.scriptamat.2004.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034608029
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.scriptamat.2005.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038570821
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s1359-6454(00)00045-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006664374
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s1359-6454(01)00064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035419425
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s1359-6454(02)00064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038700344
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s1359-6454(02)00447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039562236
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s1359-6454(99)00277-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035849446
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s1359-6462(97)00486-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037267703
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1080/01418618908209838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014592684
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1080/01418619908210299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009710101
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1080/14786435.2010.481272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010018548
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/14786435.2017.1322730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085349756
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1107/s0108767301000654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034685012
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1179/026708309x12601952777747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019092071
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1179/mst.1991.7.11.985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036846856
218 rdf:type schema:CreativeWork
219 https://doi.org/10.5006/0010-9312-31.9.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007204244
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
222 schema:name Grain Boundary Engineering Lab, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...