Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-16

AUTHORS

Zahra Silvayeh, Rudolf Vallant, Christof Sommitsch, Bruno Götzinger, Werner Karner, Matthias Hartmann

ABSTRACT

Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used. More... »

PAGES

5376-5386

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-017-4277-5

DOI

http://dx.doi.org/10.1007/s11661-017-4277-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091227073


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silvayeh", 
        "givenName": "Zahra", 
        "id": "sg:person.011750312135.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011750312135.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vallant", 
        "givenName": "Rudolf", 
        "id": "sg:person.011254002007.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254002007.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sommitsch", 
        "givenName": "Christof", 
        "id": "sg:person.010477425273.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477425273.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magna Steyr Engineering Austria AG & Co KG and Magna Steyr Fahrzeugtechnik AG & Co KG, Liebenauer Hauptstra\u00dfe 317, 8041, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.425393.a", 
          "name": [
            "Magna Steyr Engineering Austria AG & Co KG and Magna Steyr Fahrzeugtechnik AG & Co KG, Liebenauer Hauptstra\u00dfe 317, 8041, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6tzinger", 
        "givenName": "Bruno", 
        "id": "sg:person.010307235735.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307235735.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magna Steyr Engineering Austria AG & Co KG and Magna Steyr Fahrzeugtechnik AG & Co KG, Liebenauer Hauptstra\u00dfe 317, 8041, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.425393.a", 
          "name": [
            "Magna Steyr Engineering Austria AG & Co KG and Magna Steyr Fahrzeugtechnik AG & Co KG, Liebenauer Hauptstra\u00dfe 317, 8041, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karner", 
        "givenName": "Werner", 
        "id": "sg:person.013444323407.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013444323407.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Institute of Technology (AIT), Light Metals Technologies Ranshofen GmbH (LKR), P.O. Box 26, 5282, Ranshofen, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Austrian Institute of Technology (AIT), Light Metals Technologies Ranshofen GmbH (LKR), P.O. Box 26, 5282, Ranshofen, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartmann", 
        "givenName": "Matthias", 
        "id": "sg:person.016263041735.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263041735.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-010-4633-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014995346", 
          "https://doi.org/10.1007/s10853-010-4633-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s35725-017-0010-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084520615", 
          "https://doi.org/10.1007/s35725-017-0010-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00575397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029649085", 
          "https://doi.org/10.1007/bf00575397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-006-0644-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051761940", 
          "https://doi.org/10.1007/s10853-006-0644-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(16)30089-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042782364", 
          "https://doi.org/10.1016/s1006-706x(16)30089-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40194-016-0386-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019135131", 
          "https://doi.org/10.1007/s40194-016-0386-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-003-0224-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031830532", 
          "https://doi.org/10.1007/s11837-003-0224-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71488-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983876", 
          "https://doi.org/10.1007/978-3-540-71488-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-016-2035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043014487", 
          "https://doi.org/10.1007/s11665-016-2035-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00553379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048461759", 
          "https://doi.org/10.1007/bf00553379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00501-008-0373-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005446833", 
          "https://doi.org/10.1007/s00501-008-0373-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1027368032062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035361290", 
          "https://doi.org/10.1023/a:1027368032062"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-16", 
    "datePublishedReg": "2017-08-16", 
    "description": "Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X\u00a0+\u00a0ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness\u00a0<\u00a04\u00a0\u00b5m) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-017-4277-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "filler alloy composition", 
      "intermetallic layer", 
      "weld seam", 
      "layer thickness", 
      "process parameters", 
      "cold metal transfer welding", 
      "alloy composition", 
      "automotive lightweight applications", 
      "welding process parameters", 
      "high strength steel", 
      "car body structure", 
      "thin intermetallic layer", 
      "intermetallic layer thickness", 
      "dissimilar joining", 
      "butt welding", 
      "cracking tendency", 
      "steel sheets", 
      "filler alloy", 
      "aluminum alloy", 
      "heat input", 
      "alloy influence", 
      "bonding interface", 
      "lightweight applications", 
      "silicon content", 
      "hybrid components", 
      "welding", 
      "thin sheets", 
      "optical light microscopy", 
      "scandium content", 
      "alloy", 
      "thickness", 
      "layer", 
      "electron microscopy", 
      "seam", 
      "sheets", 
      "body structure", 
      "steel", 
      "blanks", 
      "microstructure", 
      "filler", 
      "microscopy", 
      "spatial variation", 
      "strong influence", 
      "influence", 
      "parameters", 
      "joining", 
      "utmost interest", 
      "interface", 
      "materials", 
      "composition", 
      "applications", 
      "content", 
      "structure", 
      "magnesium", 
      "input", 
      "order", 
      "components", 
      "results", 
      "variation", 
      "intensity", 
      "light microscopy", 
      "interest", 
      "tendency", 
      "form", 
      "study", 
      "T4"
    ], 
    "name": "Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks", 
    "pagination": "5376-5386", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091227073"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-017-4277-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-017-4277-5", 
      "https://app.dimensions.ai/details/publication/pub.1091227073"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_742.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-017-4277-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4277-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4277-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4277-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-017-4277-5'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      103 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-017-4277-5 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 anzsrc-for:0912
4 schema:author N980f1d2e24a547489ca0e1033bbac1f6
5 schema:citation sg:pub.10.1007/978-3-540-71488-0
6 sg:pub.10.1007/bf00553379
7 sg:pub.10.1007/bf00575397
8 sg:pub.10.1007/s00501-008-0373-6
9 sg:pub.10.1007/s10853-006-0644-0
10 sg:pub.10.1007/s10853-010-4633-y
11 sg:pub.10.1007/s11665-016-2035-2
12 sg:pub.10.1007/s11837-003-0224-6
13 sg:pub.10.1007/s35725-017-0010-y
14 sg:pub.10.1007/s40194-016-0386-9
15 sg:pub.10.1016/s1006-706x(16)30089-9
16 sg:pub.10.1023/a:1027368032062
17 schema:datePublished 2017-08-16
18 schema:datePublishedReg 2017-08-16
19 schema:description Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N3c834eefe9184da19d4a1d3e41456957
23 Nbf320f1876914a87a3accf9fabcd7f6d
24 sg:journal.1136292
25 schema:keywords T4
26 alloy
27 alloy composition
28 alloy influence
29 aluminum alloy
30 applications
31 automotive lightweight applications
32 blanks
33 body structure
34 bonding interface
35 butt welding
36 car body structure
37 cold metal transfer welding
38 components
39 composition
40 content
41 cracking tendency
42 dissimilar joining
43 electron microscopy
44 filler
45 filler alloy
46 filler alloy composition
47 form
48 heat input
49 high strength steel
50 hybrid components
51 influence
52 input
53 intensity
54 interest
55 interface
56 intermetallic layer
57 intermetallic layer thickness
58 joining
59 layer
60 layer thickness
61 light microscopy
62 lightweight applications
63 magnesium
64 materials
65 microscopy
66 microstructure
67 optical light microscopy
68 order
69 parameters
70 process parameters
71 results
72 scandium content
73 seam
74 sheets
75 silicon content
76 spatial variation
77 steel
78 steel sheets
79 strong influence
80 structure
81 study
82 tendency
83 thickness
84 thin intermetallic layer
85 thin sheets
86 utmost interest
87 variation
88 weld seam
89 welding
90 welding process parameters
91 schema:name Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks
92 schema:pagination 5376-5386
93 schema:productId N14a10a5505274d199230f315df35fd61
94 Nd099760c71104a0eaafe6d0e0dcacc64
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091227073
96 https://doi.org/10.1007/s11661-017-4277-5
97 schema:sdDatePublished 2022-12-01T06:35
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N1f188299b7c04004ad877b517ffb1359
100 schema:url https://doi.org/10.1007/s11661-017-4277-5
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N14a10a5505274d199230f315df35fd61 schema:name dimensions_id
105 schema:value pub.1091227073
106 rdf:type schema:PropertyValue
107 N1f188299b7c04004ad877b517ffb1359 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N293e07c53dfd4fcab5e340ae7b045486 rdf:first sg:person.010307235735.39
110 rdf:rest N93f1d78ae29a4b7fbb294312da8b1824
111 N3c834eefe9184da19d4a1d3e41456957 schema:issueNumber 11
112 rdf:type schema:PublicationIssue
113 N590c26515a3c4837b5e9a1b9f22ca38d rdf:first sg:person.016263041735.92
114 rdf:rest rdf:nil
115 N7d0872c37ec5405ab221501c79d93ddb rdf:first sg:person.010477425273.00
116 rdf:rest N293e07c53dfd4fcab5e340ae7b045486
117 N93f1d78ae29a4b7fbb294312da8b1824 rdf:first sg:person.013444323407.00
118 rdf:rest N590c26515a3c4837b5e9a1b9f22ca38d
119 N980f1d2e24a547489ca0e1033bbac1f6 rdf:first sg:person.011750312135.35
120 rdf:rest Nc370316ba1bb4af5adb2871a9daf38f2
121 Nbf320f1876914a87a3accf9fabcd7f6d schema:volumeNumber 48
122 rdf:type schema:PublicationVolume
123 Nc370316ba1bb4af5adb2871a9daf38f2 rdf:first sg:person.011254002007.02
124 rdf:rest N7d0872c37ec5405ab221501c79d93ddb
125 Nd099760c71104a0eaafe6d0e0dcacc64 schema:name doi
126 schema:value 10.1007/s11661-017-4277-5
127 rdf:type schema:PropertyValue
128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
129 schema:name Engineering
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
132 schema:name Manufacturing Engineering
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
135 schema:name Materials Engineering
136 rdf:type schema:DefinedTerm
137 sg:journal.1136292 schema:issn 1073-5623
138 1543-1940
139 schema:name Metallurgical and Materials Transactions A
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.010307235735.39 schema:affiliation grid-institutes:grid.425393.a
143 schema:familyName Götzinger
144 schema:givenName Bruno
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307235735.39
146 rdf:type schema:Person
147 sg:person.010477425273.00 schema:affiliation grid-institutes:grid.410413.3
148 schema:familyName Sommitsch
149 schema:givenName Christof
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477425273.00
151 rdf:type schema:Person
152 sg:person.011254002007.02 schema:affiliation grid-institutes:grid.410413.3
153 schema:familyName Vallant
154 schema:givenName Rudolf
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254002007.02
156 rdf:type schema:Person
157 sg:person.011750312135.35 schema:affiliation grid-institutes:grid.410413.3
158 schema:familyName Silvayeh
159 schema:givenName Zahra
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011750312135.35
161 rdf:type schema:Person
162 sg:person.013444323407.00 schema:affiliation grid-institutes:grid.425393.a
163 schema:familyName Karner
164 schema:givenName Werner
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013444323407.00
166 rdf:type schema:Person
167 sg:person.016263041735.92 schema:affiliation grid-institutes:grid.4332.6
168 schema:familyName Hartmann
169 schema:givenName Matthias
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263041735.92
171 rdf:type schema:Person
172 sg:pub.10.1007/978-3-540-71488-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983876
173 https://doi.org/10.1007/978-3-540-71488-0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf00553379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048461759
176 https://doi.org/10.1007/bf00553379
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00575397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649085
179 https://doi.org/10.1007/bf00575397
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00501-008-0373-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005446833
182 https://doi.org/10.1007/s00501-008-0373-6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10853-006-0644-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051761940
185 https://doi.org/10.1007/s10853-006-0644-0
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10853-010-4633-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014995346
188 https://doi.org/10.1007/s10853-010-4633-y
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s11665-016-2035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043014487
191 https://doi.org/10.1007/s11665-016-2035-2
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11837-003-0224-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031830532
194 https://doi.org/10.1007/s11837-003-0224-6
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s35725-017-0010-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084520615
197 https://doi.org/10.1007/s35725-017-0010-y
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s40194-016-0386-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019135131
200 https://doi.org/10.1007/s40194-016-0386-9
201 rdf:type schema:CreativeWork
202 sg:pub.10.1016/s1006-706x(16)30089-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042782364
203 https://doi.org/10.1016/s1006-706x(16)30089-9
204 rdf:type schema:CreativeWork
205 sg:pub.10.1023/a:1027368032062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035361290
206 https://doi.org/10.1023/a:1027368032062
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.410413.3 schema:alternateName Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria
209 schema:name Graz University of Technology, Institute of Materials Science, Joining and Forming (IMAT), Kopernikusgasse 24/I, 8010, Graz, Austria
210 rdf:type schema:Organization
211 grid-institutes:grid.425393.a schema:alternateName Magna Steyr Engineering Austria AG & Co KG and Magna Steyr Fahrzeugtechnik AG & Co KG, Liebenauer Hauptstraße 317, 8041, Graz, Austria
212 schema:name Magna Steyr Engineering Austria AG & Co KG and Magna Steyr Fahrzeugtechnik AG & Co KG, Liebenauer Hauptstraße 317, 8041, Graz, Austria
213 rdf:type schema:Organization
214 grid-institutes:grid.4332.6 schema:alternateName Austrian Institute of Technology (AIT), Light Metals Technologies Ranshofen GmbH (LKR), P.O. Box 26, 5282, Ranshofen, Austria
215 schema:name Austrian Institute of Technology (AIT), Light Metals Technologies Ranshofen GmbH (LKR), P.O. Box 26, 5282, Ranshofen, Austria
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...