Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08

AUTHORS

Cameron Sobie, Nicolas Bertin, Laurent Capolungo

ABSTRACT

Irradiation hardening in α-iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops. More... »

PAGES

3761-3772

References to SciGraph publications

  • 2010-08. Scaling of Dislocation Strengthening by Multiple Obstacle Types in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-015-2935-z

    DOI

    http://dx.doi.org/10.1007/s11661-015-2935-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052811537


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Georgia Tech-CNRS Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.464127.2", 
              "name": [
                "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070, Metz, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sobie", 
            "givenName": "Cameron", 
            "id": "sg:person.015145462777.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145462777.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Georgia Tech-CNRS Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.464127.2", 
              "name": [
                "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070, Metz, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertin", 
            "givenName": "Nicolas", 
            "id": "sg:person.07747504357.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747504357.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Georgia Tech-CNRS Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.464127.2", 
              "name": [
                "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070, Metz, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Capolungo", 
            "givenName": "Laurent", 
            "id": "sg:person.010471702517.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010471702517.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/14786430600570527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000317920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-010-0229-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000871314", 
              "https://doi.org/10.1007/s11661-010-0229-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-010-0229-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000871314", 
              "https://doi.org/10.1007/s11661-010-0229-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2320/matertrans.46.463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001863147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2008.02.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006460337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2006.02.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006554380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500830903005433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010279851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2013.06.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011246754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2013.06.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011450767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2008.12.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011657099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2013.02.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013177703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2008.06.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013417150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6454(02)00079-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016245190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2008.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016743856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786430903019073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019568961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01418610008212084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022680247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2011.11.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023691371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmps.2005.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027451486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786436608244762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027541257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6454(00)00172-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028764931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/df9643800049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029023836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2010.05.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029358620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3115(94)00589-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031653687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786437308227997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032516969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2011.06.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032856234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/22/4/045007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033121376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786430903164580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033145544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2003.08.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033546354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/jmr.2004.0364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034774135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/jmr.2004.0364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034774135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2014.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036393880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2008.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036841877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1572-4859(09)01501-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038308341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2012.03.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039217370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2010.06.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040399289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2009.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040574059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(82)90188-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041616937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(82)90188-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041616937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnucmat.2011.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044761024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0256(01)00205-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045632380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(88)90159-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046220034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(88)90159-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046220034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(86)90247-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046513541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(86)90247-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046513541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(00)01766-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046790097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3115(95)00054-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049718840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijplas.2014.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050386289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3115(02)01160-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051081117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3115(02)01160-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051081117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786435.2013.820384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052031499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6454(01)00153-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052390137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2011.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.265503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.265503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060761727"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08", 
        "datePublishedReg": "2015-08-01", 
        "description": "Irradiation hardening in \u03b1-iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11661-015-2935-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "46"
          }
        ], 
        "name": "Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects", 
        "pagination": "3761-3772", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb8ec926a8edca1e632be3a964bcb8a76b6392f4cb3475a4f86072ef86ed0704"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-015-2935-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052811537"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-015-2935-z", 
          "https://app.dimensions.ai/details/publication/pub.1052811537"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11661-015-2935-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-015-2935-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-015-2935-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-015-2935-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-015-2935-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-015-2935-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne992048b3f0f4e5c9f7df7891e0cfbf4
    4 schema:citation sg:pub.10.1007/s11661-010-0229-z
    5 https://doi.org/10.1016/0001-6160(82)90188-2
    6 https://doi.org/10.1016/0001-6160(86)90247-6
    7 https://doi.org/10.1016/0001-6160(88)90159-9
    8 https://doi.org/10.1016/0022-3115(94)00589-3
    9 https://doi.org/10.1016/0022-3115(95)00054-2
    10 https://doi.org/10.1016/j.actamat.2008.06.032
    11 https://doi.org/10.1016/j.actamat.2010.06.028
    12 https://doi.org/10.1016/j.actamat.2011.10.037
    13 https://doi.org/10.1016/j.actamat.2012.03.041
    14 https://doi.org/10.1016/j.actamat.2013.02.011
    15 https://doi.org/10.1016/j.ijplas.2014.06.010
    16 https://doi.org/10.1016/j.jmps.2005.09.005
    17 https://doi.org/10.1016/j.jnucmat.2003.08.037
    18 https://doi.org/10.1016/j.jnucmat.2006.02.031
    19 https://doi.org/10.1016/j.jnucmat.2008.07.001
    20 https://doi.org/10.1016/j.jnucmat.2008.08.017
    21 https://doi.org/10.1016/j.jnucmat.2008.12.069
    22 https://doi.org/10.1016/j.jnucmat.2009.11.013
    23 https://doi.org/10.1016/j.jnucmat.2010.05.020
    24 https://doi.org/10.1016/j.jnucmat.2011.06.048
    25 https://doi.org/10.1016/j.jnucmat.2011.07.006
    26 https://doi.org/10.1016/j.jnucmat.2011.11.037
    27 https://doi.org/10.1016/j.jnucmat.2014.01.024
    28 https://doi.org/10.1016/j.msea.2013.06.032
    29 https://doi.org/10.1016/j.scriptamat.2008.02.031
    30 https://doi.org/10.1016/j.scriptamat.2013.06.026
    31 https://doi.org/10.1016/s0022-3115(02)01160-1
    32 https://doi.org/10.1016/s0921-5093(00)01766-4
    33 https://doi.org/10.1016/s0927-0256(01)00205-1
    34 https://doi.org/10.1016/s1359-6454(00)00172-5
    35 https://doi.org/10.1016/s1359-6454(01)00153-7
    36 https://doi.org/10.1016/s1359-6454(02)00079-4
    37 https://doi.org/10.1016/s1572-4859(09)01501-0
    38 https://doi.org/10.1039/df9643800049
    39 https://doi.org/10.1080/01418610008212084
    40 https://doi.org/10.1080/09500830903005433
    41 https://doi.org/10.1080/14786430600570527
    42 https://doi.org/10.1080/14786430903019073
    43 https://doi.org/10.1080/14786430903164580
    44 https://doi.org/10.1080/14786435.2013.820384
    45 https://doi.org/10.1080/14786436608244762
    46 https://doi.org/10.1080/14786437308227997
    47 https://doi.org/10.1088/0965-0393/22/4/045007
    48 https://doi.org/10.1103/physrevlett.110.265503
    49 https://doi.org/10.1557/jmr.2004.0364
    50 https://doi.org/10.2320/matertrans.46.463
    51 schema:datePublished 2015-08
    52 schema:datePublishedReg 2015-08-01
    53 schema:description Irradiation hardening in α-iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf Nbb1eb4956353455786533d073e434097
    58 Nf208411adc494fd9b012fb2314783fe8
    59 sg:journal.1136292
    60 schema:name Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects
    61 schema:pagination 3761-3772
    62 schema:productId N395e8e63609f42b892477be6cebc370a
    63 Nb1e1759ce84740d9a4b1e8b3c529f68b
    64 Necdc7fc64fa74935907e3161d1f469d9
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052811537
    66 https://doi.org/10.1007/s11661-015-2935-z
    67 schema:sdDatePublished 2019-04-10T15:04
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N25a59b37e3ec4e17980f904d0960c4f0
    70 schema:url http://link.springer.com/10.1007%2Fs11661-015-2935-z
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N25a59b37e3ec4e17980f904d0960c4f0 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N336e19f6e3344b6e8ea6893b6b95c0f9 rdf:first sg:person.07747504357.26
    77 rdf:rest Nc5e8b3ddcdc54ade8ade2d1f50b768d3
    78 N395e8e63609f42b892477be6cebc370a schema:name doi
    79 schema:value 10.1007/s11661-015-2935-z
    80 rdf:type schema:PropertyValue
    81 Nb1e1759ce84740d9a4b1e8b3c529f68b schema:name readcube_id
    82 schema:value fb8ec926a8edca1e632be3a964bcb8a76b6392f4cb3475a4f86072ef86ed0704
    83 rdf:type schema:PropertyValue
    84 Nbb1eb4956353455786533d073e434097 schema:issueNumber 8
    85 rdf:type schema:PublicationIssue
    86 Nc5e8b3ddcdc54ade8ade2d1f50b768d3 rdf:first sg:person.010471702517.40
    87 rdf:rest rdf:nil
    88 Ne992048b3f0f4e5c9f7df7891e0cfbf4 rdf:first sg:person.015145462777.57
    89 rdf:rest N336e19f6e3344b6e8ea6893b6b95c0f9
    90 Necdc7fc64fa74935907e3161d1f469d9 schema:name dimensions_id
    91 schema:value pub.1052811537
    92 rdf:type schema:PropertyValue
    93 Nf208411adc494fd9b012fb2314783fe8 schema:volumeNumber 46
    94 rdf:type schema:PublicationVolume
    95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Engineering
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Materials Engineering
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1136292 schema:issn 1073-5623
    102 1543-1940
    103 schema:name Metallurgical and Materials Transactions A
    104 rdf:type schema:Periodical
    105 sg:person.010471702517.40 schema:affiliation https://www.grid.ac/institutes/grid.464127.2
    106 schema:familyName Capolungo
    107 schema:givenName Laurent
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010471702517.40
    109 rdf:type schema:Person
    110 sg:person.015145462777.57 schema:affiliation https://www.grid.ac/institutes/grid.464127.2
    111 schema:familyName Sobie
    112 schema:givenName Cameron
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145462777.57
    114 rdf:type schema:Person
    115 sg:person.07747504357.26 schema:affiliation https://www.grid.ac/institutes/grid.464127.2
    116 schema:familyName Bertin
    117 schema:givenName Nicolas
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747504357.26
    119 rdf:type schema:Person
    120 sg:pub.10.1007/s11661-010-0229-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000871314
    121 https://doi.org/10.1007/s11661-010-0229-z
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0001-6160(82)90188-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041616937
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0001-6160(86)90247-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046513541
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0001-6160(88)90159-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046220034
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0022-3115(94)00589-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031653687
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0022-3115(95)00054-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049718840
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.actamat.2008.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013417150
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.actamat.2010.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040399289
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.actamat.2011.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479285
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.actamat.2012.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039217370
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.actamat.2013.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013177703
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.ijplas.2014.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050386289
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.jmps.2005.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451486
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jnucmat.2003.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033546354
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.jnucmat.2006.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554380
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jnucmat.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036841877
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.jnucmat.2008.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016743856
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.jnucmat.2008.12.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011657099
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.jnucmat.2009.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040574059
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.jnucmat.2010.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029358620
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.jnucmat.2011.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032856234
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.jnucmat.2011.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044761024
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.jnucmat.2011.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023691371
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.jnucmat.2014.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036393880
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.msea.2013.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011450767
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.scriptamat.2008.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006460337
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.scriptamat.2013.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011246754
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0022-3115(02)01160-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051081117
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0921-5093(00)01766-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046790097
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0927-0256(01)00205-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045632380
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s1359-6454(00)00172-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028764931
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/s1359-6454(01)00153-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052390137
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/s1359-6454(02)00079-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016245190
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/s1572-4859(09)01501-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038308341
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1039/df9643800049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029023836
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1080/01418610008212084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022680247
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1080/09500830903005433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010279851
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1080/14786430600570527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000317920
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1080/14786430903019073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019568961
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1080/14786430903164580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033145544
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1080/14786435.2013.820384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031499
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1080/14786436608244762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027541257
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1080/14786437308227997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032516969
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1088/0965-0393/22/4/045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033121376
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1103/physrevlett.110.265503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761727
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1557/jmr.2004.0364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034774135
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.2320/matertrans.46.463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001863147
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.464127.2 schema:alternateName Georgia Tech-CNRS Laboratory
    216 schema:name George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070, Metz, France
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...