Computational Kinetics Simulation of Precipitation and Dissolution of Gamma Prime (γ′) in Heat Treating and Welding of 718plus Superalloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01

AUTHORS

Bo Wang, Fan Zhang, Weisheng Cao, Shuanglin Chen, Sindo Kou

ABSTRACT

The evolution of the strengthening precipitate in a precipitation-hardening alloy, such as the gamma prime (γ′) phase in Ni-base superalloys, during heat treating and welding can affect the resultant mechanical properties significantly. Computational kinetics simulation can be a useful tool for understanding and controlling of such evolution. The present study was conducted to simulate the γ′ precipitation and dissolution during aging and welding of the recently developed Ni-base superalloy 718plus using the PanPrecipitation module of the Pandat software along with available thermodynamic and kinetic databases. The purpose was to demonstrate the application of such software and databases to materials processing including heat treating and welding. The variations in the volume fraction, average precipitation size, and number density of γ′ with time during aging and welding were calculated. The calculated results under aging condition agreed well with the available experimental data, while those under welding also predicted the correct trend. More... »

PAGES

115-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-014-2617-2

DOI

http://dx.doi.org/10.1007/s11661-014-2617-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015267338


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai Key laboratory of Modern Metallurgy and Materials Processing, School of Materials Science and Engineering, Shanghai University, 200072, Shanghai, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Bo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CompuTherm (United States)", 
          "id": "https://www.grid.ac/institutes/grid.455385.a", 
          "name": [
            "CompuTherm LLC, 437 S. Yellowstone Dr., 53719, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fan", 
        "id": "sg:person.015563146155.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563146155.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CompuTherm (United States)", 
          "id": "https://www.grid.ac/institutes/grid.455385.a", 
          "name": [
            "CompuTherm LLC, 437 S. Yellowstone Dr., 53719, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Weisheng", 
        "id": "sg:person.012363036213.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012363036213.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CompuTherm (United States)", 
          "id": "https://www.grid.ac/institutes/grid.455385.a", 
          "name": [
            "CompuTherm LLC, 437 S. Yellowstone Dr., 53719, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shuanglin", 
        "id": "sg:person.010443402103.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443402103.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53705, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kou", 
        "givenName": "Sindo", 
        "id": "sg:person.0710072274.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710072274.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2009.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014015450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.11.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014221676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02659501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015096257", 
          "https://doi.org/10.1007/bf02659501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02659501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015096257", 
          "https://doi.org/10.1007/bf02659501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02659501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015096257", 
          "https://doi.org/10.1007/bf02659501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019814498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11669-006-9003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020962958", 
          "https://doi.org/10.1007/s11669-006-9003-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11669-006-9003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020962958", 
          "https://doi.org/10.1007/s11669-006-9003-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.calphad.2008.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024736990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-011-0106-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030263199", 
          "https://doi.org/10.1007/s11837-011-0106-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-031651-2.50018-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039725008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.21.948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.21.948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.638-642.2712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072132068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7449/2005/superalloys_2005_165_177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099557502"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01", 
    "datePublishedReg": "2015-01-01", 
    "description": "The evolution of the strengthening precipitate in a precipitation-hardening alloy, such as the gamma prime (\u03b3\u2032) phase in Ni-base superalloys, during heat treating and welding can affect the resultant mechanical properties significantly. Computational kinetics simulation can be a useful tool for understanding and controlling of such evolution. The present study was conducted to simulate the \u03b3\u2032 precipitation and dissolution during aging and welding of the recently developed Ni-base superalloy 718plus using the PanPrecipitation module of the Pandat software along with available thermodynamic and kinetic databases. The purpose was to demonstrate the application of such software and databases to materials processing including heat treating and welding. The variations in the volume fraction, average precipitation size, and number density of \u03b3\u2032 with time during aging and welding were calculated. The calculated results under aging condition agreed well with the available experimental data, while those under welding also predicted the correct trend.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-014-2617-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3118345", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Computational Kinetics Simulation of Precipitation and Dissolution of Gamma Prime (\u03b3\u2032) in Heat Treating and Welding of 718plus Superalloy", 
    "pagination": "115-122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48bdc8aeb142d03f30fd501ec8ee0ee819614434e06e6c3cc0fee158c6925b2c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-014-2617-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015267338"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-014-2617-2", 
      "https://app.dimensions.ai/details/publication/pub.1015267338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11661-014-2617-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2617-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2617-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2617-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2617-2'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-014-2617-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc6280c8dacf447b8a8ec01e868925a76
4 schema:citation sg:pub.10.1007/bf02659501
5 sg:pub.10.1007/s11669-006-9003-8
6 sg:pub.10.1007/s11837-011-0106-2
7 https://doi.org/10.1016/b978-0-08-031651-2.50018-5
8 https://doi.org/10.1016/j.calphad.2008.08.004
9 https://doi.org/10.1016/j.msea.2007.08.002
10 https://doi.org/10.1016/j.msea.2009.06.014
11 https://doi.org/10.1016/j.msea.2011.11.089
12 https://doi.org/10.1103/physreva.21.948
13 https://doi.org/10.4028/www.scientific.net/msf.638-642.2712
14 https://doi.org/10.7449/2005/superalloys_2005_165_177
15 schema:datePublished 2015-01
16 schema:datePublishedReg 2015-01-01
17 schema:description The evolution of the strengthening precipitate in a precipitation-hardening alloy, such as the gamma prime (γ′) phase in Ni-base superalloys, during heat treating and welding can affect the resultant mechanical properties significantly. Computational kinetics simulation can be a useful tool for understanding and controlling of such evolution. The present study was conducted to simulate the γ′ precipitation and dissolution during aging and welding of the recently developed Ni-base superalloy 718plus using the PanPrecipitation module of the Pandat software along with available thermodynamic and kinetic databases. The purpose was to demonstrate the application of such software and databases to materials processing including heat treating and welding. The variations in the volume fraction, average precipitation size, and number density of γ′ with time during aging and welding were calculated. The calculated results under aging condition agreed well with the available experimental data, while those under welding also predicted the correct trend.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N00b4e39cff71431db9dca4796b806152
22 N61ff6025216c49f1851ed361279d3a62
23 sg:journal.1136292
24 schema:name Computational Kinetics Simulation of Precipitation and Dissolution of Gamma Prime (γ′) in Heat Treating and Welding of 718plus Superalloy
25 schema:pagination 115-122
26 schema:productId N213c96aca56d404aab2bf233689073e7
27 N4056841052c74ea88f1f6b7f1b012ad0
28 Nb3a432e501fc4e53b046703284adc25d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015267338
30 https://doi.org/10.1007/s11661-014-2617-2
31 schema:sdDatePublished 2019-04-10T13:19
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb6f5a890bedb4d9da2d47d74402fffa1
34 schema:url http://link.springer.com/10.1007%2Fs11661-014-2617-2
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N00b4e39cff71431db9dca4796b806152 schema:volumeNumber 46
39 rdf:type schema:PublicationVolume
40 N059a5a2093e0469aa347b3167f5d7b32 rdf:first sg:person.0710072274.07
41 rdf:rest rdf:nil
42 N20596e09893e4ccfa884108633865d4e schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
43 schema:familyName Wang
44 schema:givenName Bo
45 rdf:type schema:Person
46 N213c96aca56d404aab2bf233689073e7 schema:name readcube_id
47 schema:value 48bdc8aeb142d03f30fd501ec8ee0ee819614434e06e6c3cc0fee158c6925b2c
48 rdf:type schema:PropertyValue
49 N4056841052c74ea88f1f6b7f1b012ad0 schema:name doi
50 schema:value 10.1007/s11661-014-2617-2
51 rdf:type schema:PropertyValue
52 N61ff6025216c49f1851ed361279d3a62 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 N98496bf5396043d48767cb7f2095b9ff rdf:first sg:person.012363036213.88
55 rdf:rest Nb8e1365808634890b28bd8846343f49d
56 Nb3a432e501fc4e53b046703284adc25d schema:name dimensions_id
57 schema:value pub.1015267338
58 rdf:type schema:PropertyValue
59 Nb6f5a890bedb4d9da2d47d74402fffa1 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nb8e1365808634890b28bd8846343f49d rdf:first sg:person.010443402103.94
62 rdf:rest N059a5a2093e0469aa347b3167f5d7b32
63 Nc6280c8dacf447b8a8ec01e868925a76 rdf:first N20596e09893e4ccfa884108633865d4e
64 rdf:rest Ncfd3b5bfa1f54c3d8d5770572b48df93
65 Ncfd3b5bfa1f54c3d8d5770572b48df93 rdf:first sg:person.015563146155.57
66 rdf:rest N98496bf5396043d48767cb7f2095b9ff
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
71 schema:name Materials Engineering
72 rdf:type schema:DefinedTerm
73 sg:grant.3118345 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-014-2617-2
74 rdf:type schema:MonetaryGrant
75 sg:journal.1136292 schema:issn 1073-5623
76 1543-1940
77 schema:name Metallurgical and Materials Transactions A
78 rdf:type schema:Periodical
79 sg:person.010443402103.94 schema:affiliation https://www.grid.ac/institutes/grid.455385.a
80 schema:familyName Chen
81 schema:givenName Shuanglin
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443402103.94
83 rdf:type schema:Person
84 sg:person.012363036213.88 schema:affiliation https://www.grid.ac/institutes/grid.455385.a
85 schema:familyName Cao
86 schema:givenName Weisheng
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012363036213.88
88 rdf:type schema:Person
89 sg:person.015563146155.57 schema:affiliation https://www.grid.ac/institutes/grid.455385.a
90 schema:familyName Zhang
91 schema:givenName Fan
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563146155.57
93 rdf:type schema:Person
94 sg:person.0710072274.07 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
95 schema:familyName Kou
96 schema:givenName Sindo
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710072274.07
98 rdf:type schema:Person
99 sg:pub.10.1007/bf02659501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015096257
100 https://doi.org/10.1007/bf02659501
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11669-006-9003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020962958
103 https://doi.org/10.1007/s11669-006-9003-8
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11837-011-0106-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030263199
106 https://doi.org/10.1007/s11837-011-0106-2
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/b978-0-08-031651-2.50018-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039725008
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.calphad.2008.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024736990
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.msea.2007.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019814498
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.msea.2009.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014015450
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.msea.2011.11.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014221676
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreva.21.948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468676
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4028/www.scientific.net/msf.638-642.2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072132068
121 rdf:type schema:CreativeWork
122 https://doi.org/10.7449/2005/superalloys_2005_165_177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099557502
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
125 schema:name Department of Materials Science and Engineering, University of Wisconsin-Madison, 53705, Madison, WI, USA
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
128 schema:name Shanghai Key laboratory of Modern Metallurgy and Materials Processing, School of Materials Science and Engineering, Shanghai University, 200072, Shanghai, P.R. China
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.455385.a schema:alternateName CompuTherm (United States)
131 schema:name CompuTherm LLC, 437 S. Yellowstone Dr., 53719, Madison, WI, USA
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...