Ontology type: schema:ScholarlyArticle Open Access: True
2014-02-25
AUTHORSS. Kumar, N. Hari Babu, G. M. Scamans, Z. Fan, K. A. Q. O’Reilly
ABSTRACTThe microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) “floating” grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications. More... »
PAGES2842-2854
http://scigraph.springernature.com/pub.10.1007/s11661-014-2229-x
DOIhttp://dx.doi.org/10.1007/s11661-014-2229-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030169078
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Materials, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, University of Oxford, Parks Road, OX1 3PH, Oxford, UK",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Department of Materials, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, University of Oxford, Parks Road, OX1 3PH, Oxford, UK"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "S.",
"id": "sg:person.011276230613.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276230613.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK",
"id": "http://www.grid.ac/institutes/grid.7728.a",
"name": [
"BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK"
],
"type": "Organization"
},
"familyName": "Hari Babu",
"givenName": "N.",
"id": "sg:person.013162630051.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013162630051.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK",
"id": "http://www.grid.ac/institutes/grid.7728.a",
"name": [
"BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK"
],
"type": "Organization"
},
"familyName": "Scamans",
"givenName": "G. M.",
"id": "sg:person.011255444337.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255444337.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK",
"id": "http://www.grid.ac/institutes/grid.7728.a",
"name": [
"BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK"
],
"type": "Organization"
},
"familyName": "Fan",
"givenName": "Z.",
"id": "sg:person.014202761657.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, University of Oxford, Parks Road, OX1 3PH, Oxford, UK",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Department of Materials, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, University of Oxford, Parks Road, OX1 3PH, Oxford, UK"
],
"type": "Organization"
},
"familyName": "O\u2019Reilly",
"givenName": "K. A. Q.",
"id": "sg:person.0766713374.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766713374.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11661-011-0722-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017310558",
"https://doi.org/10.1007/s11661-011-0722-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11661-004-0354-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032907933",
"https://doi.org/10.1007/s11661-004-0354-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11661-999-0098-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023775419",
"https://doi.org/10.1007/s11661-999-0098-5"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-02-25",
"datePublishedReg": "2014-02-25",
"description": "The microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse \u03b1-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) \u201cfloating\u201d grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the \u03b1-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that \u03b1-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications.",
"genre": "article",
"id": "sg:pub.10.1007/s11661-014-2229-x",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2780534",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2782533",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2772684",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "45"
}
],
"keywords": [
"twin-roll casting",
"secondary phases",
"impure alloy",
"roll casting",
"grain refiner",
"impurity content",
"Al-Mg alloy",
"\u03b1-Al grains",
"B grain refiners",
"complex secondary phases",
"high impurity levels",
"high impurity content",
"downstream processing",
"structural applications",
"cast strips",
"centerline segregation",
"equiaxed morphology",
"superior strength",
"metallographic analysis",
"interdendritic regions",
"microstructural evolution",
"arm spacing",
"GR strips",
"grain boundaries",
"Al-Ti",
"grain size",
"heat treatment",
"TRC process",
"X-ray diffraction analysis",
"three-dimensional analysis",
"impurity levels",
"alloy",
"casting",
"predominant secondary phases",
"interconnective network",
"sheets",
"diffraction analysis",
"ductility",
"Mg2Si",
"grains",
"rolling",
"ingots",
"strips",
"phase",
"refiner",
"aluminum",
"processing",
"high volume",
"particles",
"strength",
"spacing",
"content",
"boundaries",
"morphology",
"applications",
"direction",
"process",
"analysis",
"al",
"segregation",
"size",
"volume",
"network",
"addition",
"evolution",
"region",
"modifies",
"study",
"current study",
"levels",
"treatment"
],
"name": "Twin Roll Casting of Al-Mg Alloy with High Added Impurity Content",
"pagination": "2842-2854",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030169078"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11661-014-2229-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11661-014-2229-x",
"https://app.dimensions.ai/details/publication/pub.1030169078"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:12",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_643.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11661-014-2229-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2229-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2229-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2229-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-014-2229-x'
This table displays all metadata directly associated to this object as RDF triples.
178 TRIPLES
22 PREDICATES
99 URIs
88 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11661-014-2229-x | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N67c541779479497a8b7cffc238d88b70 |
4 | ″ | schema:citation | sg:pub.10.1007/s11661-004-0354-7 |
5 | ″ | ″ | sg:pub.10.1007/s11661-011-0722-z |
6 | ″ | ″ | sg:pub.10.1007/s11661-999-0098-5 |
7 | ″ | schema:datePublished | 2014-02-25 |
8 | ″ | schema:datePublishedReg | 2014-02-25 |
9 | ″ | schema:description | The microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) “floating” grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | Nd3adda44f3af4c0aabb7b7de82caa55b |
14 | ″ | ″ | Nec9da88ef91b49048a7f07870e3be094 |
15 | ″ | ″ | sg:journal.1136292 |
16 | ″ | schema:keywords | Al-Mg alloy |
17 | ″ | ″ | Al-Ti |
18 | ″ | ″ | B grain refiners |
19 | ″ | ″ | GR strips |
20 | ″ | ″ | Mg2Si |
21 | ″ | ″ | TRC process |
22 | ″ | ″ | X-ray diffraction analysis |
23 | ″ | ″ | addition |
24 | ″ | ″ | al |
25 | ″ | ″ | alloy |
26 | ″ | ″ | aluminum |
27 | ″ | ″ | analysis |
28 | ″ | ″ | applications |
29 | ″ | ″ | arm spacing |
30 | ″ | ″ | boundaries |
31 | ″ | ″ | cast strips |
32 | ″ | ″ | casting |
33 | ″ | ″ | centerline segregation |
34 | ″ | ″ | complex secondary phases |
35 | ″ | ″ | content |
36 | ″ | ″ | current study |
37 | ″ | ″ | diffraction analysis |
38 | ″ | ″ | direction |
39 | ″ | ″ | downstream processing |
40 | ″ | ″ | ductility |
41 | ″ | ″ | equiaxed morphology |
42 | ″ | ″ | evolution |
43 | ″ | ″ | grain boundaries |
44 | ″ | ″ | grain refiner |
45 | ″ | ″ | grain size |
46 | ″ | ″ | grains |
47 | ″ | ″ | heat treatment |
48 | ″ | ″ | high impurity content |
49 | ″ | ″ | high impurity levels |
50 | ″ | ″ | high volume |
51 | ″ | ″ | impure alloy |
52 | ″ | ″ | impurity content |
53 | ″ | ″ | impurity levels |
54 | ″ | ″ | ingots |
55 | ″ | ″ | interconnective network |
56 | ″ | ″ | interdendritic regions |
57 | ″ | ″ | levels |
58 | ″ | ″ | metallographic analysis |
59 | ″ | ″ | microstructural evolution |
60 | ″ | ″ | modifies |
61 | ″ | ″ | morphology |
62 | ″ | ″ | network |
63 | ″ | ″ | particles |
64 | ″ | ″ | phase |
65 | ″ | ″ | predominant secondary phases |
66 | ″ | ″ | process |
67 | ″ | ″ | processing |
68 | ″ | ″ | refiner |
69 | ″ | ″ | region |
70 | ″ | ″ | roll casting |
71 | ″ | ″ | rolling |
72 | ″ | ″ | secondary phases |
73 | ″ | ″ | segregation |
74 | ″ | ″ | sheets |
75 | ″ | ″ | size |
76 | ″ | ″ | spacing |
77 | ″ | ″ | strength |
78 | ″ | ″ | strips |
79 | ″ | ″ | structural applications |
80 | ″ | ″ | study |
81 | ″ | ″ | superior strength |
82 | ″ | ″ | three-dimensional analysis |
83 | ″ | ″ | treatment |
84 | ″ | ″ | twin-roll casting |
85 | ″ | ″ | volume |
86 | ″ | ″ | α-Al grains |
87 | ″ | schema:name | Twin Roll Casting of Al-Mg Alloy with High Added Impurity Content |
88 | ″ | schema:pagination | 2842-2854 |
89 | ″ | schema:productId | Nb81891cbc27b4932b5f6dd221558a609 |
90 | ″ | ″ | Ne599b45509344228be98fbaacbfb59e7 |
91 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030169078 |
92 | ″ | ″ | https://doi.org/10.1007/s11661-014-2229-x |
93 | ″ | schema:sdDatePublished | 2022-05-10T10:12 |
94 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
95 | ″ | schema:sdPublisher | Nc4ac2ff9354a4c4187a6f4579528d9e1 |
96 | ″ | schema:url | https://doi.org/10.1007/s11661-014-2229-x |
97 | ″ | sgo:license | sg:explorer/license/ |
98 | ″ | sgo:sdDataset | articles |
99 | ″ | rdf:type | schema:ScholarlyArticle |
100 | N43a3ca0fb4414ba58056a4b9ce2983d1 | rdf:first | sg:person.014202761657.20 |
101 | ″ | rdf:rest | Nbdcc4433c69a43fa9484784cd75613b9 |
102 | N67c541779479497a8b7cffc238d88b70 | rdf:first | sg:person.011276230613.13 |
103 | ″ | rdf:rest | N8185fdc62f264211b74afd0382efca77 |
104 | N8185fdc62f264211b74afd0382efca77 | rdf:first | sg:person.013162630051.03 |
105 | ″ | rdf:rest | N987b96b6e2df49e5b2e3a4a493547b79 |
106 | N987b96b6e2df49e5b2e3a4a493547b79 | rdf:first | sg:person.011255444337.65 |
107 | ″ | rdf:rest | N43a3ca0fb4414ba58056a4b9ce2983d1 |
108 | Nb81891cbc27b4932b5f6dd221558a609 | schema:name | dimensions_id |
109 | ″ | schema:value | pub.1030169078 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | Nbdcc4433c69a43fa9484784cd75613b9 | rdf:first | sg:person.0766713374.23 |
112 | ″ | rdf:rest | rdf:nil |
113 | Nc4ac2ff9354a4c4187a6f4579528d9e1 | schema:name | Springer Nature - SN SciGraph project |
114 | ″ | rdf:type | schema:Organization |
115 | Nd3adda44f3af4c0aabb7b7de82caa55b | schema:issueNumber | 6 |
116 | ″ | rdf:type | schema:PublicationIssue |
117 | Ne599b45509344228be98fbaacbfb59e7 | schema:name | doi |
118 | ″ | schema:value | 10.1007/s11661-014-2229-x |
119 | ″ | rdf:type | schema:PropertyValue |
120 | Nec9da88ef91b49048a7f07870e3be094 | schema:volumeNumber | 45 |
121 | ″ | rdf:type | schema:PublicationVolume |
122 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Engineering |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Materials Engineering |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | sg:grant.2772684 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11661-014-2229-x |
129 | ″ | rdf:type | schema:MonetaryGrant |
130 | sg:grant.2780534 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11661-014-2229-x |
131 | ″ | rdf:type | schema:MonetaryGrant |
132 | sg:grant.2782533 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11661-014-2229-x |
133 | ″ | rdf:type | schema:MonetaryGrant |
134 | sg:journal.1136292 | schema:issn | 1073-5623 |
135 | ″ | ″ | 1543-1940 |
136 | ″ | schema:name | Metallurgical and Materials Transactions A |
137 | ″ | schema:publisher | Springer Nature |
138 | ″ | rdf:type | schema:Periodical |
139 | sg:person.011255444337.65 | schema:affiliation | grid-institutes:grid.7728.a |
140 | ″ | schema:familyName | Scamans |
141 | ″ | schema:givenName | G. M. |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255444337.65 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.011276230613.13 | schema:affiliation | grid-institutes:grid.4991.5 |
145 | ″ | schema:familyName | Kumar |
146 | ″ | schema:givenName | S. |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276230613.13 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.013162630051.03 | schema:affiliation | grid-institutes:grid.7728.a |
150 | ″ | schema:familyName | Hari Babu |
151 | ″ | schema:givenName | N. |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013162630051.03 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.014202761657.20 | schema:affiliation | grid-institutes:grid.7728.a |
155 | ″ | schema:familyName | Fan |
156 | ″ | schema:givenName | Z. |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.0766713374.23 | schema:affiliation | grid-institutes:grid.4991.5 |
160 | ″ | schema:familyName | O’Reilly |
161 | ″ | schema:givenName | K. A. Q. |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766713374.23 |
163 | ″ | rdf:type | schema:Person |
164 | sg:pub.10.1007/s11661-004-0354-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032907933 |
165 | ″ | ″ | https://doi.org/10.1007/s11661-004-0354-7 |
166 | ″ | rdf:type | schema:CreativeWork |
167 | sg:pub.10.1007/s11661-011-0722-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017310558 |
168 | ″ | ″ | https://doi.org/10.1007/s11661-011-0722-z |
169 | ″ | rdf:type | schema:CreativeWork |
170 | sg:pub.10.1007/s11661-999-0098-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023775419 |
171 | ″ | ″ | https://doi.org/10.1007/s11661-999-0098-5 |
172 | ″ | rdf:type | schema:CreativeWork |
173 | grid-institutes:grid.4991.5 | schema:alternateName | Department of Materials, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, University of Oxford, Parks Road, OX1 3PH, Oxford, UK |
174 | ″ | schema:name | Department of Materials, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, University of Oxford, Parks Road, OX1 3PH, Oxford, UK |
175 | ″ | rdf:type | schema:Organization |
176 | grid-institutes:grid.7728.a | schema:alternateName | BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK |
177 | ″ | schema:name | BCAST, The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel University, UB8 3PH, Uxbridge, UK |
178 | ″ | rdf:type | schema:Organization |