In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-11-16

AUTHORS

Thomas R. Bieler, Leyun Wang, Armand J. Beaudoin, Peter Kenesei, Ulrich Lienert

ABSTRACT

A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}2} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After ~1.5 pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}2} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable 〈a〉 basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30 pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin. More... »

PAGES

109-122

References to SciGraph publications

  • 1995-07. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2011-03-13. A multi-scale statistical study of twinning in magnesium in JOM
  • 2009-11-12. Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2010-06-05. Experimental Characterization and Crystal Plasticity Modeling of Heterogeneous Deformation in Polycrystalline α-Ti in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-02. Three-dimensional X-ray structural microscopy with submicrometre resolution in NATURE
  • 2008-02-12. Deformation Twinning and the Hall–Petch Relation in Commercial Purity Ti in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2004. Three-Dimensional X-Ray Diffraction Microscopy, Mapping Polycrystals and their Dynamics in NONE
  • 2004-07. The three-dimensional X-ray crystal microscope: A new tool for materials characterization in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-03. Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-03. Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2013-04-04. Study of Twinning in α-Ti by EBSD and Laue Microdiffraction in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-03. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-03. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2011-07-19. High-energy diffraction microscopy at the advanced photon source in JOM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-013-2082-3

    DOI

    http://dx.doi.org/10.1007/s11661-013-2082-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030366036


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chemical Engineering and Materials Science, Michigan State University, 48824-1226, East Lansing, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Chemical Engineering and Materials Science, Michigan State University, 48824-1226, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bieler", 
            "givenName": "Thomas R.", 
            "id": "sg:person.014546104071.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546104071.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.187073.a", 
              "name": [
                "Chemical Engineering and Materials Science, Michigan State University, 48824-1226, East Lansing, MI, USA", 
                "Nuclear Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Leyun", 
            "id": "sg:person.015242134245.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242134245.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W. Green St., 61801, Urbana, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W. Green St., 61801, Urbana, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beaudoin", 
            "givenName": "Armand J.", 
            "id": "sg:person.01331275661.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331275661.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.187073.a", 
              "name": [
                "X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA", 
                "Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kenesei", 
            "givenName": "Peter", 
            "id": "sg:person.011437344625.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437344625.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "R\u00f6ntgen-\u00c5ngstr\u00f6m-Cluster, Deutsches Elektronen-Synchrotron, Notkestra\u00dfe 85, 22607, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7683.a", 
              "name": [
                "Nuclear Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA", 
                "R\u00f6ntgen-\u00c5ngstr\u00f6m-Cluster, Deutsches Elektronen-Synchrotron, Notkestra\u00dfe 85, 22607, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lienert", 
            "givenName": "Ulrich", 
            "id": "sg:person.01166235061.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166235061.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-002-0150-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009240989", 
              "https://doi.org/10.1007/s11661-002-0150-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-013-1714-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029725572", 
              "https://doi.org/10.1007/s11661-013-1714-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-009-0097-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011715507", 
              "https://doi.org/10.1007/s11661-009-0097-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-1028-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045016424", 
              "https://doi.org/10.1007/s11661-002-1028-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-1013-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052439822", 
              "https://doi.org/10.1007/s11661-002-1013-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415887a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045480039", 
              "https://doi.org/10.1038/415887a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-0165-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031756608", 
              "https://doi.org/10.1007/s11661-002-0165-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-011-0116-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009206530", 
              "https://doi.org/10.1007/s11837-011-0116-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-007-9442-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025491360", 
              "https://doi.org/10.1007/s11661-007-9442-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-010-0249-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053069272", 
              "https://doi.org/10.1007/s11661-010-0249-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-004-0145-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037699133", 
              "https://doi.org/10.1007/s11661-004-0145-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b97884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109718995", 
              "https://doi.org/10.1007/b97884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026082429", 
              "https://doi.org/10.1007/bf02670762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-011-0038-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013353863", 
              "https://doi.org/10.1007/s11837-011-0038-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-11-16", 
        "datePublishedReg": "2013-11-16", 
        "description": "A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {101\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\bar{1} $$\\end{document}2} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After ~1.5\u00a0pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {101\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\bar{1} $$\\end{document}2} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable \u3008a\u3009 basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30\u00a0pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-013-2082-3", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2995434", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3125532", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "keywords": [
          "strong c-axis texture", 
          "c-axis texture", 
          "stress tensor", 
          "c-axis", 
          "X-ray diffraction measurements", 
          "synchrotron X-ray diffraction measurements", 
          "nucleation events", 
          "diffraction measurements", 
          "slip transfer", 
          "grain orientation", 
          "highest RSS", 
          "X-ray diffraction data", 
          "parent grains", 
          "diffraction data", 
          "tensor", 
          "system", 
          "lattice strain", 
          "grain boundaries", 
          "events", 
          "shear stress", 
          "twin events", 
          "grains", 
          "nucleation", 
          "subsurface", 
          "twin variants", 
          "boundaries", 
          "RSS", 
          "slip systems", 
          "orientation", 
          "direction", 
          "instances", 
          "axis", 
          "twin nucleation", 
          "average lattice strain", 
          "tensile strain", 
          "texture", 
          "situ characterization", 
          "measurements", 
          "Ti", 
          "transfer", 
          "twin system", 
          "cases", 
          "samples", 
          "mass", 
          "time", 
          "data", 
          "stress", 
          "load", 
          "variants", 
          "characterization", 
          "materials", 
          "same piece", 
          "center", 
          "pieces", 
          "prior studies", 
          "percent strain", 
          "study", 
          "majority", 
          "twins", 
          "specimen", 
          "titanium", 
          "tensile direction", 
          "tensile specimen", 
          "strains", 
          "pure titanium", 
          "basal slip system", 
          "pure Ti", 
          "tensile axis", 
          "grade 1", 
          "small tensile specimen", 
          "pct tensile strain", 
          "hard grain orientations", 
          "observed twins"
        ], 
        "name": "In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD", 
        "pagination": "109-122", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030366036"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-013-2082-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-013-2082-3", 
          "https://app.dimensions.ai/details/publication/pub.1030366036"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_588.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-013-2082-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2082-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2082-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2082-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2082-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      21 PREDICATES      114 URIs      89 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-013-2082-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 anzsrc-for:0913
    6 schema:author N9406f36e65044d2b8c53ffc6cd5ca157
    7 schema:citation sg:pub.10.1007/b97884
    8 sg:pub.10.1007/bf02670762
    9 sg:pub.10.1007/s11661-002-0150-1
    10 sg:pub.10.1007/s11661-002-0165-7
    11 sg:pub.10.1007/s11661-002-1013-5
    12 sg:pub.10.1007/s11661-002-1028-y
    13 sg:pub.10.1007/s11661-004-0145-1
    14 sg:pub.10.1007/s11661-007-9442-9
    15 sg:pub.10.1007/s11661-009-0097-6
    16 sg:pub.10.1007/s11661-010-0249-8
    17 sg:pub.10.1007/s11661-013-1714-y
    18 sg:pub.10.1007/s11837-011-0038-x
    19 sg:pub.10.1007/s11837-011-0116-0
    20 sg:pub.10.1038/415887a
    21 schema:datePublished 2013-11-16
    22 schema:datePublishedReg 2013-11-16
    23 schema:description A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}2} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After ~1.5 pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}2} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable 〈a〉 basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30 pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N6e4ce3130a6c4586a980e6145b248839
    27 Nf1781ea3b0bf4413aaa991f99f3a85eb
    28 sg:journal.1136292
    29 schema:keywords RSS
    30 Ti
    31 X-ray diffraction data
    32 X-ray diffraction measurements
    33 average lattice strain
    34 axis
    35 basal slip system
    36 boundaries
    37 c-axis
    38 c-axis texture
    39 cases
    40 center
    41 characterization
    42 data
    43 diffraction data
    44 diffraction measurements
    45 direction
    46 events
    47 grade 1
    48 grain boundaries
    49 grain orientation
    50 grains
    51 hard grain orientations
    52 highest RSS
    53 instances
    54 lattice strain
    55 load
    56 majority
    57 mass
    58 materials
    59 measurements
    60 nucleation
    61 nucleation events
    62 observed twins
    63 orientation
    64 parent grains
    65 pct tensile strain
    66 percent strain
    67 pieces
    68 prior studies
    69 pure Ti
    70 pure titanium
    71 same piece
    72 samples
    73 shear stress
    74 situ characterization
    75 slip systems
    76 slip transfer
    77 small tensile specimen
    78 specimen
    79 strains
    80 stress
    81 stress tensor
    82 strong c-axis texture
    83 study
    84 subsurface
    85 synchrotron X-ray diffraction measurements
    86 system
    87 tensile axis
    88 tensile direction
    89 tensile specimen
    90 tensile strain
    91 tensor
    92 texture
    93 time
    94 titanium
    95 transfer
    96 twin events
    97 twin nucleation
    98 twin system
    99 twin variants
    100 twins
    101 variants
    102 schema:name In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD
    103 schema:pagination 109-122
    104 schema:productId N205e5ec483f5416ca066948a5689d69b
    105 N60a51377b2554089995343f6044c41f6
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030366036
    107 https://doi.org/10.1007/s11661-013-2082-3
    108 schema:sdDatePublished 2022-12-01T06:30
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N56edced5e18e4d058a7b4c2b71ad032a
    111 schema:url https://doi.org/10.1007/s11661-013-2082-3
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N0ebbd42b0a5548259c8faf3ed71240f3 rdf:first sg:person.01331275661.94
    116 rdf:rest N1ae68339211e400ba88c2c641b04659f
    117 N1ae68339211e400ba88c2c641b04659f rdf:first sg:person.011437344625.00
    118 rdf:rest N41efc707589547e8b3a9857c2fc50a55
    119 N205e5ec483f5416ca066948a5689d69b schema:name dimensions_id
    120 schema:value pub.1030366036
    121 rdf:type schema:PropertyValue
    122 N41efc707589547e8b3a9857c2fc50a55 rdf:first sg:person.01166235061.10
    123 rdf:rest rdf:nil
    124 N56edced5e18e4d058a7b4c2b71ad032a schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 N60a51377b2554089995343f6044c41f6 schema:name doi
    127 schema:value 10.1007/s11661-013-2082-3
    128 rdf:type schema:PropertyValue
    129 N6e4ce3130a6c4586a980e6145b248839 schema:issueNumber 1
    130 rdf:type schema:PublicationIssue
    131 N9406f36e65044d2b8c53ffc6cd5ca157 rdf:first sg:person.014546104071.34
    132 rdf:rest Nf40f691810514c1ab1aeec3482fd0da7
    133 Nf1781ea3b0bf4413aaa991f99f3a85eb schema:volumeNumber 45
    134 rdf:type schema:PublicationVolume
    135 Nf40f691810514c1ab1aeec3482fd0da7 rdf:first sg:person.015242134245.38
    136 rdf:rest N0ebbd42b0a5548259c8faf3ed71240f3
    137 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Chemical Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Physical Chemistry (incl. Structural)
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Engineering
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Materials Engineering
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Mechanical Engineering
    151 rdf:type schema:DefinedTerm
    152 sg:grant.2995434 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-013-2082-3
    153 rdf:type schema:MonetaryGrant
    154 sg:grant.3125532 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-013-2082-3
    155 rdf:type schema:MonetaryGrant
    156 sg:journal.1136292 schema:issn 1073-5623
    157 1543-1940
    158 schema:name Metallurgical and Materials Transactions A
    159 schema:publisher Springer Nature
    160 rdf:type schema:Periodical
    161 sg:person.011437344625.00 schema:affiliation grid-institutes:grid.187073.a
    162 schema:familyName Kenesei
    163 schema:givenName Peter
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437344625.00
    165 rdf:type schema:Person
    166 sg:person.01166235061.10 schema:affiliation grid-institutes:grid.7683.a
    167 schema:familyName Lienert
    168 schema:givenName Ulrich
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166235061.10
    170 rdf:type schema:Person
    171 sg:person.01331275661.94 schema:affiliation grid-institutes:grid.35403.31
    172 schema:familyName Beaudoin
    173 schema:givenName Armand J.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331275661.94
    175 rdf:type schema:Person
    176 sg:person.014546104071.34 schema:affiliation grid-institutes:grid.17088.36
    177 schema:familyName Bieler
    178 schema:givenName Thomas R.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546104071.34
    180 rdf:type schema:Person
    181 sg:person.015242134245.38 schema:affiliation grid-institutes:grid.187073.a
    182 schema:familyName Wang
    183 schema:givenName Leyun
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242134245.38
    185 rdf:type schema:Person
    186 sg:pub.10.1007/b97884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718995
    187 https://doi.org/10.1007/b97884
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf02670762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026082429
    190 https://doi.org/10.1007/bf02670762
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s11661-002-0150-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009240989
    193 https://doi.org/10.1007/s11661-002-0150-1
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s11661-002-0165-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031756608
    196 https://doi.org/10.1007/s11661-002-0165-7
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s11661-002-1013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052439822
    199 https://doi.org/10.1007/s11661-002-1013-5
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s11661-002-1028-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045016424
    202 https://doi.org/10.1007/s11661-002-1028-y
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11661-004-0145-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037699133
    205 https://doi.org/10.1007/s11661-004-0145-1
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11661-007-9442-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025491360
    208 https://doi.org/10.1007/s11661-007-9442-9
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11661-009-0097-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011715507
    211 https://doi.org/10.1007/s11661-009-0097-6
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11661-010-0249-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069272
    214 https://doi.org/10.1007/s11661-010-0249-8
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s11661-013-1714-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029725572
    217 https://doi.org/10.1007/s11661-013-1714-y
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s11837-011-0038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013353863
    220 https://doi.org/10.1007/s11837-011-0038-x
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s11837-011-0116-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009206530
    223 https://doi.org/10.1007/s11837-011-0116-0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/415887a schema:sameAs https://app.dimensions.ai/details/publication/pub.1045480039
    226 https://doi.org/10.1038/415887a
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.17088.36 schema:alternateName Chemical Engineering and Materials Science, Michigan State University, 48824-1226, East Lansing, MI, USA
    229 schema:name Chemical Engineering and Materials Science, Michigan State University, 48824-1226, East Lansing, MI, USA
    230 rdf:type schema:Organization
    231 grid-institutes:grid.187073.a schema:alternateName Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA
    232 Nuclear Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA
    233 schema:name Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA
    234 Chemical Engineering and Materials Science, Michigan State University, 48824-1226, East Lansing, MI, USA
    235 Nuclear Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA
    236 X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA
    237 rdf:type schema:Organization
    238 grid-institutes:grid.35403.31 schema:alternateName Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W. Green St., 61801, Urbana, IL, USA
    239 schema:name Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W. Green St., 61801, Urbana, IL, USA
    240 rdf:type schema:Organization
    241 grid-institutes:grid.7683.a schema:alternateName Röntgen-Ångström-Cluster, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
    242 schema:name Nuclear Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, 60439, Argonne, IL, USA
    243 Röntgen-Ångström-Cluster, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...