Comparative Study on Plastic Deformation of Nanocrystalline Al and Ni View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10-31

AUTHORS

Mao Wen, Mingwei Chen

ABSTRACT

The tensile plastic deformation of nanocrystalline (nc) Al and Ni, with grain sizes of 13.5 and 15.5 nm, respectively, is studied by molecular dynamics simulations. The results are analyzed using common neighbor analysis to characterize grain boundaries, dislocations and twins, and atomic strains to characterize plastic deformation. It is revealed that grain boundary (GB)-mediated process occurs before dislocation activities are initiated. The plasticity inside grains is carried by full dislocations in nc Al and by partial dislocations in nc Ni. For the first time, we observe zigzag dislocation motion initiating from grain boundaries where partial dislocations nucleate on parallel planes in nc Al without cross-slip. We also observe partial dislocation cross-slip via Fleischer mechanism in nc Ni. No twin is found in the deformation process of nc Al while plenty of twins are observed in nc Ni. In general, both dislocation-mediated processes and GB sliding contribute to the global plastic deformation significantly. More... »

PAGES

1631-1638

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-013-2076-1

DOI

http://dx.doi.org/10.1007/s11661-013-2076-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020959462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Mao", 
        "id": "sg:person.010740346235.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010740346235.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China", 
            "WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat1136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048093767", 
          "https://doi.org/10.1038/nmat1136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-003-0106-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032598772", 
          "https://doi.org/10.1007/s11661-003-0106-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040247523", 
          "https://doi.org/10.1038/nmat1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005391699", 
          "https://doi.org/10.1038/nmat700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017254723", 
          "https://doi.org/10.1038/35328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2001.0372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010484159", 
          "https://doi.org/10.1557/jmr.2001.0372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020853531", 
          "https://doi.org/10.1038/35254"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10-31", 
    "datePublishedReg": "2013-10-31", 
    "description": "The tensile plastic deformation of nanocrystalline (nc) Al and Ni, with grain sizes of 13.5 and 15.5\u00a0nm, respectively, is studied by molecular dynamics simulations. The results are analyzed using common neighbor analysis to characterize grain boundaries, dislocations and twins, and atomic strains to characterize plastic deformation. It is revealed that grain boundary (GB)-mediated process occurs before dislocation activities are initiated. The plasticity inside grains is carried by full dislocations in nc Al and by partial dislocations in nc Ni. For the first time, we observe zigzag dislocation motion initiating from grain boundaries where partial dislocations nucleate on parallel planes in nc Al without cross-slip. We also observe partial dislocation cross-slip via Fleischer mechanism in nc Ni. No twin is found in the deformation process of nc Al while plenty of twins are observed in nc Ni. In general, both dislocation-mediated processes and GB sliding contribute to the global plastic deformation significantly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-013-2076-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "plastic deformation", 
      "grain boundaries", 
      "NC Ni", 
      "nanocrystalline Al", 
      "NC Al", 
      "partial dislocations", 
      "tensile plastic deformation", 
      "global plastic deformation", 
      "dislocation-mediated processes", 
      "dislocation activity", 
      "deformation process", 
      "dislocation motion", 
      "full dislocations", 
      "grain size", 
      "common neighbor analysis", 
      "deformation", 
      "Ni", 
      "dislocations", 
      "Fleischer mechanism", 
      "dynamics simulations", 
      "parallel planes", 
      "molecular dynamics simulations", 
      "boundaries", 
      "al", 
      "process", 
      "simulations", 
      "grains", 
      "motion", 
      "first time", 
      "twins", 
      "neighbor analysis", 
      "comparative study", 
      "plane", 
      "size", 
      "results", 
      "time", 
      "GB", 
      "plasticity", 
      "analysis", 
      "mechanism", 
      "study", 
      "activity"
    ], 
    "name": "Comparative Study on Plastic Deformation of Nanocrystalline Al and Ni", 
    "pagination": "1631-1638", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020959462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-013-2076-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-013-2076-1", 
      "https://app.dimensions.ai/details/publication/pub.1020959462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-013-2076-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2076-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2076-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2076-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-2076-1'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      73 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-013-2076-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6df6adb04d794dbe90bd418d7d20e2db
4 schema:citation sg:pub.10.1007/s11661-003-0106-0
5 sg:pub.10.1038/35254
6 sg:pub.10.1038/35328
7 sg:pub.10.1038/nmat1035
8 sg:pub.10.1038/nmat1136
9 sg:pub.10.1038/nmat700
10 sg:pub.10.1557/jmr.2001.0372
11 schema:datePublished 2013-10-31
12 schema:datePublishedReg 2013-10-31
13 schema:description The tensile plastic deformation of nanocrystalline (nc) Al and Ni, with grain sizes of 13.5 and 15.5 nm, respectively, is studied by molecular dynamics simulations. The results are analyzed using common neighbor analysis to characterize grain boundaries, dislocations and twins, and atomic strains to characterize plastic deformation. It is revealed that grain boundary (GB)-mediated process occurs before dislocation activities are initiated. The plasticity inside grains is carried by full dislocations in nc Al and by partial dislocations in nc Ni. For the first time, we observe zigzag dislocation motion initiating from grain boundaries where partial dislocations nucleate on parallel planes in nc Al without cross-slip. We also observe partial dislocation cross-slip via Fleischer mechanism in nc Ni. No twin is found in the deformation process of nc Al while plenty of twins are observed in nc Ni. In general, both dislocation-mediated processes and GB sliding contribute to the global plastic deformation significantly.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N45274c1c5b5648339ca6c5d4c3784425
17 Nb7574dfe05b5435f9f995947003b896a
18 sg:journal.1136292
19 schema:keywords Fleischer mechanism
20 GB
21 NC Al
22 NC Ni
23 Ni
24 activity
25 al
26 analysis
27 boundaries
28 common neighbor analysis
29 comparative study
30 deformation
31 deformation process
32 dislocation activity
33 dislocation motion
34 dislocation-mediated processes
35 dislocations
36 dynamics simulations
37 first time
38 full dislocations
39 global plastic deformation
40 grain boundaries
41 grain size
42 grains
43 mechanism
44 molecular dynamics simulations
45 motion
46 nanocrystalline Al
47 neighbor analysis
48 parallel planes
49 partial dislocations
50 plane
51 plastic deformation
52 plasticity
53 process
54 results
55 simulations
56 size
57 study
58 tensile plastic deformation
59 time
60 twins
61 schema:name Comparative Study on Plastic Deformation of Nanocrystalline Al and Ni
62 schema:pagination 1631-1638
63 schema:productId N0b6c130d56e34b08b0761e0061f75612
64 N703c4ffb2e814aca9e35dfc659a027e8
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020959462
66 https://doi.org/10.1007/s11661-013-2076-1
67 schema:sdDatePublished 2022-09-02T15:57
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N570b23b282ae47048da6e9d645ba9e88
70 schema:url https://doi.org/10.1007/s11661-013-2076-1
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0b6c130d56e34b08b0761e0061f75612 schema:name dimensions_id
75 schema:value pub.1020959462
76 rdf:type schema:PropertyValue
77 N45274c1c5b5648339ca6c5d4c3784425 schema:issueNumber 3
78 rdf:type schema:PublicationIssue
79 N570b23b282ae47048da6e9d645ba9e88 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N6df6adb04d794dbe90bd418d7d20e2db rdf:first sg:person.010740346235.39
82 rdf:rest N8658cade61654d39ae5794dedc3e36c5
83 N703c4ffb2e814aca9e35dfc659a027e8 schema:name doi
84 schema:value 10.1007/s11661-013-2076-1
85 rdf:type schema:PropertyValue
86 N8658cade61654d39ae5794dedc3e36c5 rdf:first sg:person.01111213505.34
87 rdf:rest rdf:nil
88 Nb7574dfe05b5435f9f995947003b896a schema:volumeNumber 45
89 rdf:type schema:PublicationVolume
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:journal.1136292 schema:issn 1073-5623
97 1543-1940
98 schema:name Metallurgical and Materials Transactions A
99 schema:publisher Springer Nature
100 rdf:type schema:Periodical
101 sg:person.010740346235.39 schema:affiliation grid-institutes:grid.16821.3c
102 schema:familyName Wen
103 schema:givenName Mao
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010740346235.39
105 rdf:type schema:Person
106 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.69566.3a
107 schema:familyName Chen
108 schema:givenName Mingwei
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
110 rdf:type schema:Person
111 sg:pub.10.1007/s11661-003-0106-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032598772
112 https://doi.org/10.1007/s11661-003-0106-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/35254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020853531
115 https://doi.org/10.1038/35254
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/35328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017254723
118 https://doi.org/10.1038/35328
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nmat1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040247523
121 https://doi.org/10.1038/nmat1035
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nmat1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048093767
124 https://doi.org/10.1038/nmat1136
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nmat700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005391699
127 https://doi.org/10.1038/nmat700
128 rdf:type schema:CreativeWork
129 sg:pub.10.1557/jmr.2001.0372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010484159
130 https://doi.org/10.1557/jmr.2001.0372
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.16821.3c schema:alternateName State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China
133 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China
134 rdf:type schema:Organization
135 grid-institutes:grid.69566.3a schema:alternateName WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
136 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China
137 WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...