Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-08-20

AUTHORS

JONATHAN Friedli, J. L. Fife, P. Di Napoli, M. Rappaz

ABSTRACT

Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle100\rangle$$\end{document} directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle100\rangle$$\end{document} to 〈110〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle110\rangle$$\end{document} in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, 〈320〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle320\rangle$$\end{document} dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid–liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites. More... »

PAGES

5522-5531

References to SciGraph publications

  • 2013-09-05. Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-07-09. Orientation selection in dendritic evolution in NATURE MATERIALS
  • 2008-05-22. Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-09. Dendrite growth directions in aluminum-zinc alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-013-1912-7

    DOI

    http://dx.doi.org/10.1007/s11661-013-1912-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002570471


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NOVELIS Inc., Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
                "NOVELIS Inc., Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Friedli", 
            "givenName": "JONATHAN", 
            "id": "sg:person.016302665061.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302665061.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5991.4", 
              "name": [
                "Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fife", 
            "givenName": "J. L.", 
            "id": "sg:person.01304760035.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304760035.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Napoli", 
            "givenName": "P.", 
            "id": "sg:person.013363076261.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363076261.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-008-9546-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020301704", 
              "https://doi.org/10.1007/s11661-008-9546-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-013-1911-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021369809", 
              "https://doi.org/10.1007/s11661-013-1911-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023047602", 
              "https://doi.org/10.1038/nmat1693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02586112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013232379", 
              "https://doi.org/10.1007/bf02586112"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08-20", 
        "datePublishedReg": "2013-08-20", 
        "description": "Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., \u3008100\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\langle100\\rangle$$\\end{document} directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from \u3008100\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\langle100\\rangle$$\\end{document} to \u3008110\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\langle110\\rangle$$\\end{document} in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, \u3008320\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\langle320\\rangle$$\\end{document} dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid\u2013liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-013-1912-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "common dendrites", 
          "current study", 
          "dendrites", 
          "zinc content", 
          "study", 
          "specimens", 
          "increase", 
          "mechanism", 
          "PCT", 
          "seaweeds", 
          "reasons", 
          "zinc", 
          "access", 
          "combination", 
          "morphology", 
          "microscopy", 
          "dendritic structure", 
          "content", 
          "wt", 
          "formation", 
          "direction", 
          "composition", 
          "system", 
          "phase", 
          "determination", 
          "Part I", 
          "structure", 
          "plane", 
          "solubility", 
          "phenomenology", 
          "X-ray tomographic microscopy", 
          "direction mechanism", 
          "axes", 
          "Zn", 
          "transition", 
          "complexity", 
          "tomographic microscopy", 
          "orientation", 
          "metals", 
          "anisotropy", 
          "aluminum", 
          "theory", 
          "dendritic growth morphology", 
          "fcc aluminum", 
          "Al-Zn", 
          "dendrite growth direction", 
          "growth direction", 
          "wt pct", 
          "dendrite orientation transition", 
          "orientation transition", 
          "large solubility", 
          "hexagonal metals", 
          "aluminum phase", 
          "solid\u2013liquid interfacial energy anisotropy", 
          "interfacial energy anisotropy", 
          "energy anisotropy", 
          "satisfactory theory", 
          "observed microstructures", 
          "microstructure", 
          "crystal orientation", 
          "electron backscatter diffraction", 
          "alloy", 
          "symmetry plane", 
          "growth morphology", 
          "Al-Zn alloy", 
          "solidification", 
          "crystal axes", 
          "intermediate compositions", 
          "Bridgman", 
          "diffraction"
        ], 
        "name": "Dendritic Growth Morphologies in Al-Zn Alloys\u2014Part I: X-ray Tomographic Microscopy", 
        "pagination": "5522-5531", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002570471"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-013-1912-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-013-1912-7", 
          "https://app.dimensions.ai/details/publication/pub.1002570471"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_593.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-013-1912-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1912-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1912-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1912-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1912-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      98 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-013-1912-7 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N931a1708faf7478685e80357347fdd34
    4 schema:citation sg:pub.10.1007/bf02586112
    5 sg:pub.10.1007/s11661-008-9546-x
    6 sg:pub.10.1007/s11661-013-1911-8
    7 sg:pub.10.1038/nmat1693
    8 schema:datePublished 2013-08-20
    9 schema:datePublishedReg 2013-08-20
    10 schema:description Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle100\rangle$$\end{document} directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle100\rangle$$\end{document} to 〈110〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle110\rangle$$\end{document} in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, 〈320〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle320\rangle$$\end{document} dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid–liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf Nac9fb4de4fb946d4863f597897a61d2d
    14 Nd31a10f5e02a4c5ca15a3328785813b1
    15 sg:journal.1136292
    16 schema:keywords Al-Zn
    17 Al-Zn alloy
    18 Bridgman
    19 PCT
    20 Part I
    21 X-ray tomographic microscopy
    22 Zn
    23 access
    24 alloy
    25 aluminum
    26 aluminum phase
    27 anisotropy
    28 axes
    29 combination
    30 common dendrites
    31 complexity
    32 composition
    33 content
    34 crystal axes
    35 crystal orientation
    36 current study
    37 dendrite growth direction
    38 dendrite orientation transition
    39 dendrites
    40 dendritic growth morphology
    41 dendritic structure
    42 determination
    43 diffraction
    44 direction
    45 direction mechanism
    46 electron backscatter diffraction
    47 energy anisotropy
    48 fcc aluminum
    49 formation
    50 growth direction
    51 growth morphology
    52 hexagonal metals
    53 increase
    54 interfacial energy anisotropy
    55 intermediate compositions
    56 large solubility
    57 mechanism
    58 metals
    59 microscopy
    60 microstructure
    61 morphology
    62 observed microstructures
    63 orientation
    64 orientation transition
    65 phase
    66 phenomenology
    67 plane
    68 reasons
    69 satisfactory theory
    70 seaweeds
    71 solidification
    72 solid–liquid interfacial energy anisotropy
    73 solubility
    74 specimens
    75 structure
    76 study
    77 symmetry plane
    78 system
    79 theory
    80 tomographic microscopy
    81 transition
    82 wt
    83 wt pct
    84 zinc
    85 zinc content
    86 schema:name Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy
    87 schema:pagination 5522-5531
    88 schema:productId N57fff93d7b7548488f70bdcc0a59a4e2
    89 Nd8e64def01df4da38ed7f993a6cbfb9f
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002570471
    91 https://doi.org/10.1007/s11661-013-1912-7
    92 schema:sdDatePublished 2022-12-01T06:30
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Nca1d71083f214d6f89c0bc3a316c62c6
    95 schema:url https://doi.org/10.1007/s11661-013-1912-7
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N2d12d96f1bf047c59e16d2eb0c9ac359 rdf:first sg:person.013657516157.10
    100 rdf:rest rdf:nil
    101 N4a28e8649ab44cad9743d68920070225 rdf:first sg:person.013363076261.57
    102 rdf:rest N2d12d96f1bf047c59e16d2eb0c9ac359
    103 N57fff93d7b7548488f70bdcc0a59a4e2 schema:name doi
    104 schema:value 10.1007/s11661-013-1912-7
    105 rdf:type schema:PropertyValue
    106 N6d4aab0ed4ef4b9b9550db7c728f0500 rdf:first sg:person.01304760035.67
    107 rdf:rest N4a28e8649ab44cad9743d68920070225
    108 N931a1708faf7478685e80357347fdd34 rdf:first sg:person.016302665061.10
    109 rdf:rest N6d4aab0ed4ef4b9b9550db7c728f0500
    110 Nac9fb4de4fb946d4863f597897a61d2d schema:issueNumber 12
    111 rdf:type schema:PublicationIssue
    112 Nca1d71083f214d6f89c0bc3a316c62c6 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 Nd31a10f5e02a4c5ca15a3328785813b1 schema:volumeNumber 44
    115 rdf:type schema:PublicationVolume
    116 Nd8e64def01df4da38ed7f993a6cbfb9f schema:name dimensions_id
    117 schema:value pub.1002570471
    118 rdf:type schema:PropertyValue
    119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Engineering
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Materials Engineering
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1136292 schema:issn 1073-5623
    126 1543-1940
    127 schema:name Metallurgical and Materials Transactions A
    128 schema:publisher Springer Nature
    129 rdf:type schema:Periodical
    130 sg:person.01304760035.67 schema:affiliation grid-institutes:grid.5991.4
    131 schema:familyName Fife
    132 schema:givenName J. L.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304760035.67
    134 rdf:type schema:Person
    135 sg:person.013363076261.57 schema:affiliation grid-institutes:grid.5333.6
    136 schema:familyName Di Napoli
    137 schema:givenName P.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363076261.57
    139 rdf:type schema:Person
    140 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    141 schema:familyName Rappaz
    142 schema:givenName M.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    144 rdf:type schema:Person
    145 sg:person.016302665061.10 schema:affiliation grid-institutes:None
    146 schema:familyName Friedli
    147 schema:givenName JONATHAN
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302665061.10
    149 rdf:type schema:Person
    150 sg:pub.10.1007/bf02586112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232379
    151 https://doi.org/10.1007/bf02586112
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11661-008-9546-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020301704
    154 https://doi.org/10.1007/s11661-008-9546-x
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11661-013-1911-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021369809
    157 https://doi.org/10.1007/s11661-013-1911-8
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nmat1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023047602
    160 https://doi.org/10.1038/nmat1693
    161 rdf:type schema:CreativeWork
    162 grid-institutes:None schema:alternateName NOVELIS Inc., Sierre, Switzerland
    163 schema:name Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    164 NOVELIS Inc., Sierre, Switzerland
    165 rdf:type schema:Organization
    166 grid-institutes:grid.5333.6 schema:alternateName Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    167 schema:name Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    168 rdf:type schema:Organization
    169 grid-institutes:grid.5991.4 schema:alternateName Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland
    170 schema:name Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...