Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09-05

AUTHORS

J. A. Dantzig, Paolo Di Napoli, J. Friedli, M. Rappaz

ABSTRACT

In Part I of this article, the role of the Zn content in the development of solidification microstructures in Al-Zn alloys was investigated experimentally using X-ray tomographic microscopy. The transition region between 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{100}\rangle}$$\end{document} dendrites found at low Zn content and 〈110〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{110}\rangle}$$\end{document} dendrites found at high Zn content was characterized by textured seaweed-type structures. This Dendrite Orientation Transition (DOT) was explained by the effect of the Zn content on the weak anisotropy of the solid–liquid interfacial energy of Al. In order to further support this interpretation and to elucidate the growth mechanisms of the complex structures that form in the DOT region, a detailed phase-field study exploring anisotropy parameters’ space is presented in this paper. For equiaxed growth, our results essentially recapitulate those of Haxhimali et al.[1] in simulations for pure materials. We find distinct regions of the parameter space associated with 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{100}\rangle}$$\end{document} and 〈110〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{110}\rangle}$$\end{document} dendrites, separated by a region where hyperbranched dendrites are observed. In simulations of directional solidification, we find similar behavior at the extrema, but in this case, the anisotropy parameters corresponding to the hyperbranched region produce textured seaweeds. As noted in the experimental work reported in Part I, these structures are actually dendrites that prefer to grow misaligned with respect to the thermal gradient direction. We also show that in this region, the dendrites grow with a blunted tip that oscillates and splits, resulting in an oriented trunk that continuously emits side branches in other directions. We conclude by making a correlation between the alloy composition and surface energy anisotropy parameters. More... »

PAGES

5532-5543

References to SciGraph publications

  • 2008-05-22. Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-07. Experimental Measurement of Anisotropy in Crystal-Melt Interfacial Energy in INTERFACE SCIENCE
  • 2006-09. Dendrite growth directions in aluminum-zinc alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-07-09. Orientation selection in dendritic evolution in NATURE MATERIALS
  • 2003-03. Dendritic growth with fluid flow in pure materials in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2013-08-20. Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-013-1911-8

    DOI

    http://dx.doi.org/10.1007/s11661-013-1911-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021369809


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street, 61801, Urbana, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
                "Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street, 61801, Urbana, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dantzig", 
            "givenName": "J. A.", 
            "id": "sg:person.01273531415.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273531415.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Napoli", 
            "givenName": "Paolo", 
            "id": "sg:person.013363076261.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363076261.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Novelis Inc., Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
                "Novelis Inc., Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Friedli", 
            "givenName": "J.", 
            "id": "sg:person.016302665061.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302665061.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Laboratoire de Simulation des Mat\u00e9riaux, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02586112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013232379", 
              "https://doi.org/10.1007/bf02586112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-008-9546-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020301704", 
              "https://doi.org/10.1007/s11661-008-9546-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-013-1912-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002570471", 
              "https://doi.org/10.1007/s11661-013-1912-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023047602", 
              "https://doi.org/10.1038/nmat1693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015884415896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006896947", 
              "https://doi.org/10.1023/a:1015884415896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-003-0082-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017365611", 
              "https://doi.org/10.1007/s11661-003-0082-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-09-05", 
        "datePublishedReg": "2013-09-05", 
        "description": "In Part I of this article, the role of the Zn content in the development of solidification microstructures in Al-Zn alloys was investigated experimentally using X-ray tomographic microscopy. The transition region between \u3008100\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\langle{100}\\rangle}$$\\end{document} dendrites found at low Zn content and \u3008110\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\langle{110}\\rangle}$$\\end{document} dendrites found at high Zn content was characterized by textured seaweed-type structures. This Dendrite Orientation Transition (DOT) was explained by the effect of the Zn content on the weak anisotropy of the solid\u2013liquid interfacial energy of Al. In order to further support this interpretation and to elucidate the growth mechanisms of the complex structures that form in the DOT region, a detailed phase-field study exploring anisotropy parameters\u2019 space is presented in this paper. For equiaxed growth, our results essentially recapitulate those of Haxhimali et\u00a0al.[1] in simulations for pure materials. We find distinct regions of the parameter space associated with \u3008100\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\langle{100}\\rangle}$$\\end{document} and \u3008110\u3009\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\langle{110}\\rangle}$$\\end{document} dendrites, separated by a region where hyperbranched dendrites are observed. In simulations of directional solidification, we find similar behavior at the extrema, but in this case, the anisotropy parameters corresponding to the hyperbranched region produce textured seaweeds. As noted in the experimental work reported in Part I, these structures are actually dendrites that prefer to grow misaligned with respect to the thermal gradient direction. We also show that in this region, the dendrites grow with a blunted tip that oscillates and splits, resulting in an oriented trunk that continuously emits side branches in other directions. We conclude by making a correlation between the alloy composition and surface energy anisotropy parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-013-1911-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5226335", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5212315", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3776936", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8748197", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "Al-Zn alloy", 
          "dendrite orientation transition", 
          "solid\u2013liquid interfacial energy", 
          "thermal gradient direction", 
          "phase-field computations", 
          "phase-field study", 
          "solidification microstructure", 
          "alloy composition", 
          "X-ray tomographic microscopy", 
          "equiaxed growth", 
          "directional solidification", 
          "interfacial energy", 
          "dendritic growth morphology", 
          "anisotropy parameters", 
          "alloy", 
          "high Zn content", 
          "growth mechanism", 
          "Part I", 
          "experimental work", 
          "pure materials", 
          "low Zn content", 
          "growth morphology", 
          "Zn content", 
          "tomographic microscopy", 
          "transition region", 
          "orientation transition", 
          "gradient direction", 
          "simulations", 
          "microstructure", 
          "dot region", 
          "similar behavior", 
          "complex structure", 
          "solidification", 
          "parameters", 
          "parameter space", 
          "Part II", 
          "weak anisotropy", 
          "structure", 
          "materials", 
          "direction", 
          "al", 
          "content", 
          "energy", 
          "microscopy", 
          "anisotropy", 
          "tip", 
          "morphology", 
          "distinct regions", 
          "behavior", 
          "side branches", 
          "region", 
          "extrema", 
          "dendrites", 
          "work", 
          "order", 
          "computation", 
          "composition", 
          "transition", 
          "results", 
          "space", 
          "respect", 
          "effect", 
          "mechanism", 
          "split", 
          "development", 
          "growth", 
          "cases", 
          "study", 
          "branches", 
          "et", 
          "correlation", 
          "seaweeds", 
          "interpretation", 
          "article", 
          "role", 
          "paper", 
          "trunk"
        ], 
        "name": "Dendritic Growth Morphologies in Al-Zn Alloys\u2014Part II: Phase-Field Computations", 
        "pagination": "5532-5543", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021369809"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-013-1911-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-013-1911-8", 
          "https://app.dimensions.ai/details/publication/pub.1021369809"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_584.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-013-1911-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1911-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1911-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1911-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-013-1911-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      106 URIs      92 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-013-1911-8 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N20fefcedb83f41a1880dd365e85c7da2
    4 schema:citation sg:pub.10.1007/bf02586112
    5 sg:pub.10.1007/s11661-003-0082-4
    6 sg:pub.10.1007/s11661-008-9546-x
    7 sg:pub.10.1007/s11661-013-1912-7
    8 sg:pub.10.1023/a:1015884415896
    9 sg:pub.10.1038/nmat1693
    10 schema:datePublished 2013-09-05
    11 schema:datePublishedReg 2013-09-05
    12 schema:description In Part I of this article, the role of the Zn content in the development of solidification microstructures in Al-Zn alloys was investigated experimentally using X-ray tomographic microscopy. The transition region between 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{100}\rangle}$$\end{document} dendrites found at low Zn content and 〈110〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{110}\rangle}$$\end{document} dendrites found at high Zn content was characterized by textured seaweed-type structures. This Dendrite Orientation Transition (DOT) was explained by the effect of the Zn content on the weak anisotropy of the solid–liquid interfacial energy of Al. In order to further support this interpretation and to elucidate the growth mechanisms of the complex structures that form in the DOT region, a detailed phase-field study exploring anisotropy parameters’ space is presented in this paper. For equiaxed growth, our results essentially recapitulate those of Haxhimali et al.[1] in simulations for pure materials. We find distinct regions of the parameter space associated with 〈100〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{100}\rangle}$$\end{document} and 〈110〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{110}\rangle}$$\end{document} dendrites, separated by a region where hyperbranched dendrites are observed. In simulations of directional solidification, we find similar behavior at the extrema, but in this case, the anisotropy parameters corresponding to the hyperbranched region produce textured seaweeds. As noted in the experimental work reported in Part I, these structures are actually dendrites that prefer to grow misaligned with respect to the thermal gradient direction. We also show that in this region, the dendrites grow with a blunted tip that oscillates and splits, resulting in an oriented trunk that continuously emits side branches in other directions. We conclude by making a correlation between the alloy composition and surface energy anisotropy parameters.
    13 schema:genre article
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N3d585968d0bf485b8bfc58daecd3983f
    16 Naf7df487aca84c60ae13ebbacbe18311
    17 sg:journal.1136292
    18 schema:keywords Al-Zn alloy
    19 Part I
    20 Part II
    21 X-ray tomographic microscopy
    22 Zn content
    23 al
    24 alloy
    25 alloy composition
    26 anisotropy
    27 anisotropy parameters
    28 article
    29 behavior
    30 branches
    31 cases
    32 complex structure
    33 composition
    34 computation
    35 content
    36 correlation
    37 dendrite orientation transition
    38 dendrites
    39 dendritic growth morphology
    40 development
    41 direction
    42 directional solidification
    43 distinct regions
    44 dot region
    45 effect
    46 energy
    47 equiaxed growth
    48 et
    49 experimental work
    50 extrema
    51 gradient direction
    52 growth
    53 growth mechanism
    54 growth morphology
    55 high Zn content
    56 interfacial energy
    57 interpretation
    58 low Zn content
    59 materials
    60 mechanism
    61 microscopy
    62 microstructure
    63 morphology
    64 order
    65 orientation transition
    66 paper
    67 parameter space
    68 parameters
    69 phase-field computations
    70 phase-field study
    71 pure materials
    72 region
    73 respect
    74 results
    75 role
    76 seaweeds
    77 side branches
    78 similar behavior
    79 simulations
    80 solidification
    81 solidification microstructure
    82 solid–liquid interfacial energy
    83 space
    84 split
    85 structure
    86 study
    87 thermal gradient direction
    88 tip
    89 tomographic microscopy
    90 transition
    91 transition region
    92 trunk
    93 weak anisotropy
    94 work
    95 schema:name Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations
    96 schema:pagination 5532-5543
    97 schema:productId N06f88be66fd346a5a1ff1e9d057da479
    98 N3a6fee6662e84862a3c85d280a7f5eef
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021369809
    100 https://doi.org/10.1007/s11661-013-1911-8
    101 schema:sdDatePublished 2022-12-01T06:30
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher Nc79daa7457ca4d1b8d615171ef09dd5b
    104 schema:url https://doi.org/10.1007/s11661-013-1911-8
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N06f88be66fd346a5a1ff1e9d057da479 schema:name doi
    109 schema:value 10.1007/s11661-013-1911-8
    110 rdf:type schema:PropertyValue
    111 N09063c7ab70f429fb4d6e894bbffbbbb rdf:first sg:person.013657516157.10
    112 rdf:rest rdf:nil
    113 N20fefcedb83f41a1880dd365e85c7da2 rdf:first sg:person.01273531415.63
    114 rdf:rest Ndd53c9f2842e460c8dbe8b2388fda157
    115 N3a6fee6662e84862a3c85d280a7f5eef schema:name dimensions_id
    116 schema:value pub.1021369809
    117 rdf:type schema:PropertyValue
    118 N3d585968d0bf485b8bfc58daecd3983f schema:volumeNumber 44
    119 rdf:type schema:PublicationVolume
    120 N7025a517332a4d1585e15b0ffb47eb63 rdf:first sg:person.016302665061.10
    121 rdf:rest N09063c7ab70f429fb4d6e894bbffbbbb
    122 Naf7df487aca84c60ae13ebbacbe18311 schema:issueNumber 12
    123 rdf:type schema:PublicationIssue
    124 Nc79daa7457ca4d1b8d615171ef09dd5b schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 Ndd53c9f2842e460c8dbe8b2388fda157 rdf:first sg:person.013363076261.57
    127 rdf:rest N7025a517332a4d1585e15b0ffb47eb63
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Materials Engineering
    133 rdf:type schema:DefinedTerm
    134 sg:grant.3776936 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-013-1911-8
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.5212315 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-013-1911-8
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.5226335 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-013-1911-8
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.8748197 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-013-1911-8
    141 rdf:type schema:MonetaryGrant
    142 sg:journal.1136292 schema:issn 1073-5623
    143 1543-1940
    144 schema:name Metallurgical and Materials Transactions A
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.01273531415.63 schema:affiliation grid-institutes:grid.35403.31
    148 schema:familyName Dantzig
    149 schema:givenName J. A.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273531415.63
    151 rdf:type schema:Person
    152 sg:person.013363076261.57 schema:affiliation grid-institutes:grid.5333.6
    153 schema:familyName Di Napoli
    154 schema:givenName Paolo
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363076261.57
    156 rdf:type schema:Person
    157 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    158 schema:familyName Rappaz
    159 schema:givenName M.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    161 rdf:type schema:Person
    162 sg:person.016302665061.10 schema:affiliation grid-institutes:None
    163 schema:familyName Friedli
    164 schema:givenName J.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302665061.10
    166 rdf:type schema:Person
    167 sg:pub.10.1007/bf02586112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232379
    168 https://doi.org/10.1007/bf02586112
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s11661-003-0082-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017365611
    171 https://doi.org/10.1007/s11661-003-0082-4
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11661-008-9546-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020301704
    174 https://doi.org/10.1007/s11661-008-9546-x
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11661-013-1912-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002570471
    177 https://doi.org/10.1007/s11661-013-1912-7
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1023/a:1015884415896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006896947
    180 https://doi.org/10.1023/a:1015884415896
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nmat1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023047602
    183 https://doi.org/10.1038/nmat1693
    184 rdf:type schema:CreativeWork
    185 grid-institutes:None schema:alternateName Novelis Inc., Sierre, Switzerland
    186 schema:name Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    187 Novelis Inc., Sierre, Switzerland
    188 rdf:type schema:Organization
    189 grid-institutes:grid.35403.31 schema:alternateName Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street, 61801, Urbana, IL, USA
    190 schema:name Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street, 61801, Urbana, IL, USA
    191 Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    192 rdf:type schema:Organization
    193 grid-institutes:grid.5333.6 schema:alternateName Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    194 schema:name Laboratoire de Simulation des Matériaux, Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LSMX, Station 12, 1015, Lausanne, Switzerland
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...