Ontology type: schema:ScholarlyArticle Open Access: True
2012-11-08
AUTHORS ABSTRACTIn this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔTc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and ΔTc; hc decreases; and ΔTc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement. More... »
PAGES1409-1418
http://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8
DOIhttp://dx.doi.org/10.1007/s11661-012-1495-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050665841
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K."
],
"type": "Organization"
},
"familyName": "Fan",
"givenName": "Zhongyun",
"id": "sg:person.014202761657.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02324097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042949035",
"https://doi.org/10.1007/bf02324097"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1015190207719",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012230283",
"https://doi.org/10.1023/a:1015190207719"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02654921",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021119879",
"https://doi.org/10.1007/bf02654921"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11661-999-0098-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023775419",
"https://doi.org/10.1007/s11661-999-0098-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11661-005-0030-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010301568",
"https://doi.org/10.1007/s11661-005-0030-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11661-005-0054-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028665725",
"https://doi.org/10.1007/s11661-005-0054-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-11-08",
"datePublishedReg": "2012-11-08",
"description": "In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (\u0394Tc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and \u0394Tc; hc decreases; and \u0394Tc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.",
"genre": "article",
"id": "sg:pub.10.1007/s11661-012-1495-8",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2782533",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "44"
}
],
"keywords": [
"elastic strain energy",
"strain energy",
"grain refinement",
"PS layer",
"heterogeneous nucleation",
"critical thickness",
"lattice misfit",
"effective grain refinement",
"misfit strain energy",
"solid layer",
"epitaxial growth",
"substrate surface",
"layer thickness",
"misfit dislocations",
"critical undercooling",
"epitaxial model",
"nucleation model",
"layer",
"solid phase",
"thickness",
"nucleation",
"\u0394Tc increases",
"substrate",
"interface",
"energy",
"experimental findings",
"solidification",
"misfit",
"HC",
"atomic arrangement",
"strong influence",
"undercooling",
"\u0394Tc",
"surface",
"critical level",
"model",
"refinement",
"dislocations",
"linear increase",
"further growth",
"phase",
"general approach",
"influence",
"increase",
"arrangement",
"point",
"growth",
"approach",
"growth stages",
"stage",
"rise",
"potent substrate",
"literature",
"article",
"levels",
"mimics",
"findings"
],
"name": "An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates",
"pagination": "1409-1418",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050665841"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11661-012-1495-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11661-012-1495-8",
"https://app.dimensions.ai/details/publication/pub.1050665841"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_561.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11661-012-1495-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'
This table displays all metadata directly associated to this object as RDF triples.
141 TRIPLES
22 PREDICATES
87 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11661-012-1495-8 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N207330052cfb4912b6f0e4f4c0b78c27 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02324097 |
5 | ″ | ″ | sg:pub.10.1007/bf02654921 |
6 | ″ | ″ | sg:pub.10.1007/s11661-005-0030-6 |
7 | ″ | ″ | sg:pub.10.1007/s11661-005-0054-y |
8 | ″ | ″ | sg:pub.10.1007/s11661-999-0098-5 |
9 | ″ | ″ | sg:pub.10.1023/a:1015190207719 |
10 | ″ | schema:datePublished | 2012-11-08 |
11 | ″ | schema:datePublishedReg | 2012-11-08 |
12 | ″ | schema:description | In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔTc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and ΔTc; hc decreases; and ΔTc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | N74a271f46b104487bc9a3642ef6eec2d |
17 | ″ | ″ | N9c8761443f1b4ff38b21c61170bb731d |
18 | ″ | ″ | sg:journal.1136292 |
19 | ″ | schema:keywords | HC |
20 | ″ | ″ | PS layer |
21 | ″ | ″ | approach |
22 | ″ | ″ | arrangement |
23 | ″ | ″ | article |
24 | ″ | ″ | atomic arrangement |
25 | ″ | ″ | critical level |
26 | ″ | ″ | critical thickness |
27 | ″ | ″ | critical undercooling |
28 | ″ | ″ | dislocations |
29 | ″ | ″ | effective grain refinement |
30 | ″ | ″ | elastic strain energy |
31 | ″ | ″ | energy |
32 | ″ | ″ | epitaxial growth |
33 | ″ | ″ | epitaxial model |
34 | ″ | ″ | experimental findings |
35 | ″ | ″ | findings |
36 | ″ | ″ | further growth |
37 | ″ | ″ | general approach |
38 | ″ | ″ | grain refinement |
39 | ″ | ″ | growth |
40 | ″ | ″ | growth stages |
41 | ″ | ″ | heterogeneous nucleation |
42 | ″ | ″ | increase |
43 | ″ | ″ | influence |
44 | ″ | ″ | interface |
45 | ″ | ″ | lattice misfit |
46 | ″ | ″ | layer |
47 | ″ | ″ | layer thickness |
48 | ″ | ″ | levels |
49 | ″ | ″ | linear increase |
50 | ″ | ″ | literature |
51 | ″ | ″ | mimics |
52 | ″ | ″ | misfit |
53 | ″ | ″ | misfit dislocations |
54 | ″ | ″ | misfit strain energy |
55 | ″ | ″ | model |
56 | ″ | ″ | nucleation |
57 | ″ | ″ | nucleation model |
58 | ″ | ″ | phase |
59 | ″ | ″ | point |
60 | ″ | ″ | potent substrate |
61 | ″ | ″ | refinement |
62 | ″ | ″ | rise |
63 | ″ | ″ | solid layer |
64 | ″ | ″ | solid phase |
65 | ″ | ″ | solidification |
66 | ″ | ″ | stage |
67 | ″ | ″ | strain energy |
68 | ″ | ″ | strong influence |
69 | ″ | ″ | substrate |
70 | ″ | ″ | substrate surface |
71 | ″ | ″ | surface |
72 | ″ | ″ | thickness |
73 | ″ | ″ | undercooling |
74 | ″ | ″ | ΔTc |
75 | ″ | ″ | ΔTc increases |
76 | ″ | schema:name | An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates |
77 | ″ | schema:pagination | 1409-1418 |
78 | ″ | schema:productId | N0ee590d0addd4069aea84dbd81c361d1 |
79 | ″ | ″ | Nb33d1c0ba5b6491faba1411a96aecc0c |
80 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050665841 |
81 | ″ | ″ | https://doi.org/10.1007/s11661-012-1495-8 |
82 | ″ | schema:sdDatePublished | 2022-05-20T07:27 |
83 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
84 | ″ | schema:sdPublisher | N031599331d264668b1d7e51f97b070e3 |
85 | ″ | schema:url | https://doi.org/10.1007/s11661-012-1495-8 |
86 | ″ | sgo:license | sg:explorer/license/ |
87 | ″ | sgo:sdDataset | articles |
88 | ″ | rdf:type | schema:ScholarlyArticle |
89 | N031599331d264668b1d7e51f97b070e3 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | N0ee590d0addd4069aea84dbd81c361d1 | schema:name | doi |
92 | ″ | schema:value | 10.1007/s11661-012-1495-8 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N207330052cfb4912b6f0e4f4c0b78c27 | rdf:first | sg:person.014202761657.20 |
95 | ″ | rdf:rest | rdf:nil |
96 | N74a271f46b104487bc9a3642ef6eec2d | schema:issueNumber | 3 |
97 | ″ | rdf:type | schema:PublicationIssue |
98 | N9c8761443f1b4ff38b21c61170bb731d | schema:volumeNumber | 44 |
99 | ″ | rdf:type | schema:PublicationVolume |
100 | Nb33d1c0ba5b6491faba1411a96aecc0c | schema:name | dimensions_id |
101 | ″ | schema:value | pub.1050665841 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Materials Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:grant.2782533 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11661-012-1495-8 |
110 | ″ | rdf:type | schema:MonetaryGrant |
111 | sg:journal.1136292 | schema:issn | 1073-5623 |
112 | ″ | ″ | 1543-1940 |
113 | ″ | schema:name | Metallurgical and Materials Transactions A |
114 | ″ | schema:publisher | Springer Nature |
115 | ″ | rdf:type | schema:Periodical |
116 | sg:person.014202761657.20 | schema:affiliation | grid-institutes:None |
117 | ″ | schema:familyName | Fan |
118 | ″ | schema:givenName | Zhongyun |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20 |
120 | ″ | rdf:type | schema:Person |
121 | sg:pub.10.1007/bf02324097 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042949035 |
122 | ″ | ″ | https://doi.org/10.1007/bf02324097 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | sg:pub.10.1007/bf02654921 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021119879 |
125 | ″ | ″ | https://doi.org/10.1007/bf02654921 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/s11661-005-0030-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010301568 |
128 | ″ | ″ | https://doi.org/10.1007/s11661-005-0030-6 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s11661-005-0054-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028665725 |
131 | ″ | ″ | https://doi.org/10.1007/s11661-005-0054-y |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1007/s11661-999-0098-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023775419 |
134 | ″ | ″ | https://doi.org/10.1007/s11661-999-0098-5 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1023/a:1015190207719 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012230283 |
137 | ″ | ″ | https://doi.org/10.1023/a:1015190207719 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | grid-institutes:None | schema:alternateName | Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K. |
140 | ″ | schema:name | Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K. |
141 | ″ | rdf:type | schema:Organization |