An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-11-08

AUTHORS

Zhongyun Fan

ABSTRACT

In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔTc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and ΔTc; hc decreases; and ΔTc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement. More... »

PAGES

1409-1418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8

DOI

http://dx.doi.org/10.1007/s11661-012-1495-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050665841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhongyun", 
        "id": "sg:person.014202761657.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02324097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042949035", 
          "https://doi.org/10.1007/bf02324097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015190207719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012230283", 
          "https://doi.org/10.1023/a:1015190207719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021119879", 
          "https://doi.org/10.1007/bf02654921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0098-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023775419", 
          "https://doi.org/10.1007/s11661-999-0098-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0030-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010301568", 
          "https://doi.org/10.1007/s11661-005-0030-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0054-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028665725", 
          "https://doi.org/10.1007/s11661-005-0054-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11-08", 
    "datePublishedReg": "2012-11-08", 
    "description": "In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (\u0394Tc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and \u0394Tc; hc decreases; and \u0394Tc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-012-1495-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2782533", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "elastic strain energy", 
      "strain energy", 
      "grain refinement", 
      "PS layer", 
      "heterogeneous nucleation", 
      "critical thickness", 
      "lattice misfit", 
      "effective grain refinement", 
      "misfit strain energy", 
      "solid layer", 
      "epitaxial growth", 
      "substrate surface", 
      "layer thickness", 
      "misfit dislocations", 
      "critical undercooling", 
      "epitaxial model", 
      "nucleation model", 
      "layer", 
      "solid phase", 
      "thickness", 
      "nucleation", 
      "\u0394Tc increases", 
      "substrate", 
      "interface", 
      "energy", 
      "experimental findings", 
      "solidification", 
      "misfit", 
      "HC", 
      "atomic arrangement", 
      "strong influence", 
      "undercooling", 
      "\u0394Tc", 
      "surface", 
      "critical level", 
      "model", 
      "refinement", 
      "dislocations", 
      "linear increase", 
      "further growth", 
      "phase", 
      "general approach", 
      "influence", 
      "increase", 
      "arrangement", 
      "point", 
      "growth", 
      "approach", 
      "growth stages", 
      "stage", 
      "rise", 
      "potent substrate", 
      "literature", 
      "article", 
      "levels", 
      "mimics", 
      "findings"
    ], 
    "name": "An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates", 
    "pagination": "1409-1418", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050665841"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-012-1495-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-012-1495-8", 
      "https://app.dimensions.ai/details/publication/pub.1050665841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_561.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-012-1495-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      87 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-012-1495-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N207330052cfb4912b6f0e4f4c0b78c27
4 schema:citation sg:pub.10.1007/bf02324097
5 sg:pub.10.1007/bf02654921
6 sg:pub.10.1007/s11661-005-0030-6
7 sg:pub.10.1007/s11661-005-0054-y
8 sg:pub.10.1007/s11661-999-0098-5
9 sg:pub.10.1023/a:1015190207719
10 schema:datePublished 2012-11-08
11 schema:datePublishedReg 2012-11-08
12 schema:description In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔTc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and ΔTc; hc decreases; and ΔTc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N74a271f46b104487bc9a3642ef6eec2d
17 N9c8761443f1b4ff38b21c61170bb731d
18 sg:journal.1136292
19 schema:keywords HC
20 PS layer
21 approach
22 arrangement
23 article
24 atomic arrangement
25 critical level
26 critical thickness
27 critical undercooling
28 dislocations
29 effective grain refinement
30 elastic strain energy
31 energy
32 epitaxial growth
33 epitaxial model
34 experimental findings
35 findings
36 further growth
37 general approach
38 grain refinement
39 growth
40 growth stages
41 heterogeneous nucleation
42 increase
43 influence
44 interface
45 lattice misfit
46 layer
47 layer thickness
48 levels
49 linear increase
50 literature
51 mimics
52 misfit
53 misfit dislocations
54 misfit strain energy
55 model
56 nucleation
57 nucleation model
58 phase
59 point
60 potent substrate
61 refinement
62 rise
63 solid layer
64 solid phase
65 solidification
66 stage
67 strain energy
68 strong influence
69 substrate
70 substrate surface
71 surface
72 thickness
73 undercooling
74 ΔTc
75 ΔTc increases
76 schema:name An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates
77 schema:pagination 1409-1418
78 schema:productId N0ee590d0addd4069aea84dbd81c361d1
79 Nb33d1c0ba5b6491faba1411a96aecc0c
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665841
81 https://doi.org/10.1007/s11661-012-1495-8
82 schema:sdDatePublished 2022-05-20T07:27
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N031599331d264668b1d7e51f97b070e3
85 schema:url https://doi.org/10.1007/s11661-012-1495-8
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N031599331d264668b1d7e51f97b070e3 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N0ee590d0addd4069aea84dbd81c361d1 schema:name doi
92 schema:value 10.1007/s11661-012-1495-8
93 rdf:type schema:PropertyValue
94 N207330052cfb4912b6f0e4f4c0b78c27 rdf:first sg:person.014202761657.20
95 rdf:rest rdf:nil
96 N74a271f46b104487bc9a3642ef6eec2d schema:issueNumber 3
97 rdf:type schema:PublicationIssue
98 N9c8761443f1b4ff38b21c61170bb731d schema:volumeNumber 44
99 rdf:type schema:PublicationVolume
100 Nb33d1c0ba5b6491faba1411a96aecc0c schema:name dimensions_id
101 schema:value pub.1050665841
102 rdf:type schema:PropertyValue
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 sg:grant.2782533 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-012-1495-8
110 rdf:type schema:MonetaryGrant
111 sg:journal.1136292 schema:issn 1073-5623
112 1543-1940
113 schema:name Metallurgical and Materials Transactions A
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.014202761657.20 schema:affiliation grid-institutes:None
117 schema:familyName Fan
118 schema:givenName Zhongyun
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20
120 rdf:type schema:Person
121 sg:pub.10.1007/bf02324097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042949035
122 https://doi.org/10.1007/bf02324097
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02654921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021119879
125 https://doi.org/10.1007/bf02654921
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11661-005-0030-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010301568
128 https://doi.org/10.1007/s11661-005-0030-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11661-005-0054-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028665725
131 https://doi.org/10.1007/s11661-005-0054-y
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11661-999-0098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023775419
134 https://doi.org/10.1007/s11661-999-0098-5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1015190207719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012230283
137 https://doi.org/10.1023/a:1015190207719
138 rdf:type schema:CreativeWork
139 grid-institutes:None schema:alternateName Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.
140 schema:name Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...