An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-11-08

AUTHORS

Zhongyun Fan

ABSTRACT

In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔTc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and ΔTc; hc decreases; and ΔTc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement. More... »

PAGES

1409-1418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8

DOI

http://dx.doi.org/10.1007/s11661-012-1495-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050665841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhongyun", 
        "id": "sg:person.014202761657.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-999-0098-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023775419", 
          "https://doi.org/10.1007/s11661-999-0098-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0030-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010301568", 
          "https://doi.org/10.1007/s11661-005-0030-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021119879", 
          "https://doi.org/10.1007/bf02654921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0054-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028665725", 
          "https://doi.org/10.1007/s11661-005-0054-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02324097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042949035", 
          "https://doi.org/10.1007/bf02324097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015190207719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012230283", 
          "https://doi.org/10.1023/a:1015190207719"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11-08", 
    "datePublishedReg": "2012-11-08", 
    "description": "In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (\u0394Tc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and \u0394Tc; hc decreases; and \u0394Tc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-012-1495-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2782533", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "elastic strain energy", 
      "grain refinement", 
      "PS layer", 
      "strain energy", 
      "heterogeneous nucleation", 
      "lattice misfit", 
      "effective grain refinement", 
      "critical thickness", 
      "misfit strain energy", 
      "solid layer", 
      "epitaxial growth", 
      "layer thickness", 
      "substrate surface", 
      "misfit dislocations", 
      "critical undercooling", 
      "epitaxial model", 
      "layer", 
      "\u0394Tc increases", 
      "solid phase", 
      "thickness", 
      "nucleation model", 
      "nucleation", 
      "substrate", 
      "interface", 
      "energy", 
      "solidification", 
      "misfit", 
      "strong influence", 
      "experimental findings", 
      "HC", 
      "undercooling", 
      "\u0394Tc", 
      "surface", 
      "atomic arrangement", 
      "critical level", 
      "refinement", 
      "model", 
      "dislocations", 
      "further growth", 
      "linear increase", 
      "phase", 
      "influence", 
      "general approach", 
      "increase", 
      "arrangement", 
      "growth", 
      "point", 
      "approach", 
      "growth stages", 
      "rise", 
      "stage", 
      "potent substrate", 
      "literature", 
      "article", 
      "levels", 
      "mimics", 
      "findings", 
      "pseudomorphic solid (PS) layer", 
      "coherent PS/N interface mimics", 
      "PS/N interface mimics", 
      "N interface mimics", 
      "interface mimics", 
      "strained PS layer", 
      "initial coherent PS/N interface", 
      "coherent PS/N interface", 
      "PS/N interface", 
      "N interface", 
      "epitaxial nucleation model"
    ], 
    "name": "An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates", 
    "pagination": "1409-1418", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050665841"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-012-1495-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-012-1495-8", 
      "https://app.dimensions.ai/details/publication/pub.1050665841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_561.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-012-1495-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-012-1495-8'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      22 PREDICATES      98 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-012-1495-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6cff2f1e3ecd47b798a665c0aee4719c
4 schema:citation sg:pub.10.1007/bf02324097
5 sg:pub.10.1007/bf02654921
6 sg:pub.10.1007/s11661-005-0030-6
7 sg:pub.10.1007/s11661-005-0054-y
8 sg:pub.10.1007/s11661-999-0098-5
9 sg:pub.10.1023/a:1015190207719
10 schema:datePublished 2012-11-08
11 schema:datePublishedReg 2012-11-08
12 schema:description In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔTc). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (hc), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both hc and ΔTc; hc decreases; and ΔTc increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N58058737b7d548d8a861f8540b43dc3c
17 Nd03a16e5f24741969abb41d46b40d0f2
18 sg:journal.1136292
19 schema:keywords HC
20 N interface
21 N interface mimics
22 PS layer
23 PS/N interface
24 PS/N interface mimics
25 approach
26 arrangement
27 article
28 atomic arrangement
29 coherent PS/N interface
30 coherent PS/N interface mimics
31 critical level
32 critical thickness
33 critical undercooling
34 dislocations
35 effective grain refinement
36 elastic strain energy
37 energy
38 epitaxial growth
39 epitaxial model
40 epitaxial nucleation model
41 experimental findings
42 findings
43 further growth
44 general approach
45 grain refinement
46 growth
47 growth stages
48 heterogeneous nucleation
49 increase
50 influence
51 initial coherent PS/N interface
52 interface
53 interface mimics
54 lattice misfit
55 layer
56 layer thickness
57 levels
58 linear increase
59 literature
60 mimics
61 misfit
62 misfit dislocations
63 misfit strain energy
64 model
65 nucleation
66 nucleation model
67 phase
68 point
69 potent substrate
70 pseudomorphic solid (PS) layer
71 refinement
72 rise
73 solid layer
74 solid phase
75 solidification
76 stage
77 strain energy
78 strained PS layer
79 strong influence
80 substrate
81 substrate surface
82 surface
83 thickness
84 undercooling
85 ΔTc
86 ΔTc increases
87 schema:name An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates
88 schema:pagination 1409-1418
89 schema:productId N102578fc05a646b6bb2473c6537c5ea2
90 Neab02a6db4fe43d3aa8b21ff9cfb070c
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665841
92 https://doi.org/10.1007/s11661-012-1495-8
93 schema:sdDatePublished 2022-01-01T18:26
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N908404b9374340cd9ee398a8a3b6cc8a
96 schema:url https://doi.org/10.1007/s11661-012-1495-8
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N102578fc05a646b6bb2473c6537c5ea2 schema:name dimensions_id
101 schema:value pub.1050665841
102 rdf:type schema:PropertyValue
103 N58058737b7d548d8a861f8540b43dc3c schema:volumeNumber 44
104 rdf:type schema:PublicationVolume
105 N6cff2f1e3ecd47b798a665c0aee4719c rdf:first sg:person.014202761657.20
106 rdf:rest rdf:nil
107 N908404b9374340cd9ee398a8a3b6cc8a schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nd03a16e5f24741969abb41d46b40d0f2 schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 Neab02a6db4fe43d3aa8b21ff9cfb070c schema:name doi
112 schema:value 10.1007/s11661-012-1495-8
113 rdf:type schema:PropertyValue
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.2782533 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-012-1495-8
121 rdf:type schema:MonetaryGrant
122 sg:journal.1136292 schema:issn 1073-5623
123 1543-1940
124 schema:name Metallurgical and Materials Transactions A
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.014202761657.20 schema:affiliation grid-institutes:None
128 schema:familyName Fan
129 schema:givenName Zhongyun
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20
131 rdf:type schema:Person
132 sg:pub.10.1007/bf02324097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042949035
133 https://doi.org/10.1007/bf02324097
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02654921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021119879
136 https://doi.org/10.1007/bf02654921
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11661-005-0030-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010301568
139 https://doi.org/10.1007/s11661-005-0030-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11661-005-0054-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028665725
142 https://doi.org/10.1007/s11661-005-0054-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11661-999-0098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023775419
145 https://doi.org/10.1007/s11661-999-0098-5
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1015190207719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012230283
148 https://doi.org/10.1023/a:1015190207719
149 rdf:type schema:CreativeWork
150 grid-institutes:None schema:alternateName Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.
151 schema:name Brunel Solidification Centre for Advanced Technology (BCAST), Brunel University, UB8 3PH, Uxbridge, Middlesex, U.K.
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...