A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Seok-Jae Lee, Chester J. Van Tyne

ABSTRACT

An empirical martensite kinetics model is proposed that both captures the sigmodial transformation behavior for alloy steels and remains computationally efficient. The model improves on the Koistinen and Marburger model and the van Bohemen and Sietsma model with a function that better represents the transformation rate, especially during the early stages. When compared with existing models, the proposed model exhibits better predictions of volume fraction of martensite. The proposed model also predicts various other transformation properties accurately, such as M90 temperatures and retained austenite. More... »

PAGES

422-427

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-011-0872-z

DOI

http://dx.doi.org/10.1007/s11661-011-0872-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023041967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pohang University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.49100.3c", 
          "name": [
            "Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 790-784, Pohang, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Seok-Jae", 
        "id": "sg:person.016705374301.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705374301.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Advanced Steel Processing and Products Research Center, Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Tyne", 
        "givenName": "Chester J.", 
        "id": "sg:person.07741770136.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2008.11.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001348465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.11.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004170896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010378392", 
          "https://doi.org/10.1007/s11661-997-0007-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010378392", 
          "https://doi.org/10.1007/s11661-997-0007-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(59)90170-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011727674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(59)90170-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011727674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2006.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011815251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02814877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015914385", 
          "https://doi.org/10.1007/bf02814877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02814877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015914385", 
          "https://doi.org/10.1007/bf02814877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/174328408x365838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028820814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02672301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031420756", 
          "https://doi.org/10.1007/bf02672301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02672301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031420756", 
          "https://doi.org/10.1007/bf02672301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.42.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037611382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(78)90068-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039311530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(78)90068-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039311530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048375956", 
          "https://doi.org/10.1007/bf02644497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048375956", 
          "https://doi.org/10.1007/bf02644497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2007.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053714164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.475-479.3169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072118898"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "An empirical martensite kinetics model is proposed that both captures the sigmodial transformation behavior for alloy steels and remains computationally efficient. The model improves on the Koistinen and Marburger model and the van Bohemen and Sietsma model with a function that better represents the transformation rate, especially during the early stages. When compared with existing models, the proposed model exhibits better predictions of volume fraction of martensite. The proposed model also predicts various other transformation properties accurately, such as M90 temperatures and retained austenite.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-011-0872-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels", 
    "pagination": "422-427", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dc6e45c2dcea342315d7f54d8840d5f0e938df0770e73e22b96122553437d7b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-011-0872-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023041967"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-011-0872-z", 
      "https://app.dimensions.ai/details/publication/pub.1023041967"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11661-011-0872-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-011-0872-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-011-0872-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-011-0872-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-011-0872-z'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-011-0872-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na57e84d871d8405fafdcd50790785c8a
4 schema:citation sg:pub.10.1007/bf02644497
5 sg:pub.10.1007/bf02672301
6 sg:pub.10.1007/bf02814877
7 sg:pub.10.1007/s11661-997-0007-8
8 https://doi.org/10.1016/0001-6160(59)90170-1
9 https://doi.org/10.1016/0001-6160(78)90068-8
10 https://doi.org/10.1016/j.actamat.2006.09.008
11 https://doi.org/10.1016/j.actamat.2007.11.039
12 https://doi.org/10.1016/j.scriptamat.2007.09.017
13 https://doi.org/10.1016/j.scriptamat.2008.11.043
14 https://doi.org/10.1179/174328408x365838
15 https://doi.org/10.2355/isijinternational.42.894
16 https://doi.org/10.4028/www.scientific.net/msf.475-479.3169
17 schema:datePublished 2012-02
18 schema:datePublishedReg 2012-02-01
19 schema:description An empirical martensite kinetics model is proposed that both captures the sigmodial transformation behavior for alloy steels and remains computationally efficient. The model improves on the Koistinen and Marburger model and the van Bohemen and Sietsma model with a function that better represents the transformation rate, especially during the early stages. When compared with existing models, the proposed model exhibits better predictions of volume fraction of martensite. The proposed model also predicts various other transformation properties accurately, such as M90 temperatures and retained austenite.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N5523c83218a14e81b45992ee7f39d28d
24 Nc5070f9d229749d18700ae08e104170c
25 sg:journal.1136292
26 schema:name A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels
27 schema:pagination 422-427
28 schema:productId N26f437e7b4104e84b15405f07b1dd3bc
29 Nab270312225b46c3aa9929b1a08dba92
30 Nc7a7ae40470d4059882764c2dbf74b35
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023041967
32 https://doi.org/10.1007/s11661-011-0872-z
33 schema:sdDatePublished 2019-04-10T15:03
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N39471d1adf194d1e9842100998711d62
36 schema:url http://link.springer.com/10.1007%2Fs11661-011-0872-z
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0556802107684356829d0550a98c1a84 rdf:first sg:person.07741770136.12
41 rdf:rest rdf:nil
42 N26f437e7b4104e84b15405f07b1dd3bc schema:name doi
43 schema:value 10.1007/s11661-011-0872-z
44 rdf:type schema:PropertyValue
45 N39471d1adf194d1e9842100998711d62 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N5523c83218a14e81b45992ee7f39d28d schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Na57e84d871d8405fafdcd50790785c8a rdf:first sg:person.016705374301.54
50 rdf:rest N0556802107684356829d0550a98c1a84
51 Nab270312225b46c3aa9929b1a08dba92 schema:name dimensions_id
52 schema:value pub.1023041967
53 rdf:type schema:PropertyValue
54 Nc5070f9d229749d18700ae08e104170c schema:volumeNumber 43
55 rdf:type schema:PublicationVolume
56 Nc7a7ae40470d4059882764c2dbf74b35 schema:name readcube_id
57 schema:value 6dc6e45c2dcea342315d7f54d8840d5f0e938df0770e73e22b96122553437d7b
58 rdf:type schema:PropertyValue
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
63 schema:name Materials Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1136292 schema:issn 1073-5623
66 1543-1940
67 schema:name Metallurgical and Materials Transactions A
68 rdf:type schema:Periodical
69 sg:person.016705374301.54 schema:affiliation https://www.grid.ac/institutes/grid.49100.3c
70 schema:familyName Lee
71 schema:givenName Seok-Jae
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705374301.54
73 rdf:type schema:Person
74 sg:person.07741770136.12 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
75 schema:familyName Van Tyne
76 schema:givenName Chester J.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12
78 rdf:type schema:Person
79 sg:pub.10.1007/bf02644497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048375956
80 https://doi.org/10.1007/bf02644497
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02672301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031420756
83 https://doi.org/10.1007/bf02672301
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02814877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015914385
86 https://doi.org/10.1007/bf02814877
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11661-997-0007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010378392
89 https://doi.org/10.1007/s11661-997-0007-8
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0001-6160(59)90170-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011727674
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0001-6160(78)90068-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039311530
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.actamat.2006.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011815251
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.actamat.2007.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004170896
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.scriptamat.2007.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053714164
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.scriptamat.2008.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001348465
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1179/174328408x365838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028820814
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2355/isijinternational.42.894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037611382
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4028/www.scientific.net/msf.475-479.3169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072118898
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
110 schema:name Advanced Steel Processing and Products Research Center, Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.49100.3c schema:alternateName Pohang University of Science and Technology
113 schema:name Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 790-784, Pohang, Republic of Korea
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...