Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10-19

AUTHORS

M. Sistaninia, A. B. Phillion, J.-M. Drezet, M. Rappaz

ABSTRACT

As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress–strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid–liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing. More... »

PAGES

239-248

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-010-0491-0

DOI

http://dx.doi.org/10.1007/s11661-010-0491-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024940741


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sistaninia", 
        "givenName": "M.", 
        "id": "sg:person.013564633720.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564633720.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, University of British Columbia, V1V 1V7, Kelowna, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland", 
            "School of Engineering, University of British Columbia, V1V 1V7, Kelowna, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phillion", 
        "givenName": "A. B.", 
        "id": "sg:person.01272103526.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272103526.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drezet", 
        "givenName": "J.-M.", 
        "id": "sg:person.01212610757.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-003-0083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046995640", 
          "https://doi.org/10.1007/s11661-003-0083-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-002-0040-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019859586", 
          "https://doi.org/10.1007/s11661-002-0040-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0334-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026049786", 
          "https://doi.org/10.1007/s11661-999-0334-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0244-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016571104", 
          "https://doi.org/10.1007/s11661-005-0244-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029470619", 
          "https://doi.org/10.1007/bf02651234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-008-9772-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064057", 
          "https://doi.org/10.1007/s11661-008-9772-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02664583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027480549", 
          "https://doi.org/10.1007/bf02664583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-001-0124-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047728867", 
          "https://doi.org/10.1007/s11663-001-0124-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10-19", 
    "datePublishedReg": "2010-10-19", 
    "description": "As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress\u2013strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid\u2013liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-010-0491-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "mechanical behavior", 
      "element method", 
      "finite elements", 
      "hot tearing defects", 
      "solute diffusion model", 
      "elastoviscoplastic constitutive law", 
      "material mechanical behavior", 
      "overall mechanical behavior", 
      "solid\u2013liquid structures", 
      "stress-strain simulation", 
      "finite element method", 
      "localization of strain", 
      "semisolid alloy", 
      "hot tearing", 
      "tearing defects", 
      "damper elements", 
      "grain structure", 
      "DEM approach", 
      "spring elements", 
      "solidification model", 
      "grain boundaries", 
      "flexible connectors", 
      "intergranular regions", 
      "metallic alloys", 
      "constitutive law", 
      "liquid layer", 
      "solid grains", 
      "Al-Cu", 
      "alloy", 
      "experimental data", 
      "nucleation centers", 
      "diffusion model", 
      "model predictions", 
      "Voronoi tessellation", 
      "simulations", 
      "quantitative predictions", 
      "solidification", 
      "deformation", 
      "macroscale", 
      "comprehensive model", 
      "behavior", 
      "connectors", 
      "layer", 
      "indispensible step", 
      "tessellation", 
      "prediction", 
      "elements", 
      "structure", 
      "grains", 
      "model", 
      "method", 
      "tearing", 
      "first time", 
      "boundaries", 
      "morphology", 
      "necessary step", 
      "step", 
      "approach", 
      "defects", 
      "fraction", 
      "law", 
      "account", 
      "parallel", 
      "results", 
      "strains", 
      "time", 
      "region", 
      "development", 
      "data", 
      "localization", 
      "center", 
      "literature"
    ], 
    "name": "Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method", 
    "pagination": "239-248", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024940741"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-010-0491-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-010-0491-0", 
      "https://app.dimensions.ai/details/publication/pub.1024940741"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-010-0491-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-010-0491-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-010-0491-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-010-0491-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-010-0491-0'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      104 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-010-0491-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8a473aed4fb047269b26371ca9f49cfb
4 schema:citation sg:pub.10.1007/bf02651234
5 sg:pub.10.1007/bf02664583
6 sg:pub.10.1007/s11661-002-0040-6
7 sg:pub.10.1007/s11661-003-0083-3
8 sg:pub.10.1007/s11661-005-0244-7
9 sg:pub.10.1007/s11661-008-9772-2
10 sg:pub.10.1007/s11661-999-0334-z
11 sg:pub.10.1007/s11663-001-0124-5
12 schema:datePublished 2010-10-19
13 schema:datePublishedReg 2010-10-19
14 schema:description As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress–strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid–liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N38c80f0ec2884595ba680cc1e73118ef
18 N50446d4317f94fd2bc18a980267e0fba
19 sg:journal.1136292
20 schema:keywords Al-Cu
21 DEM approach
22 Voronoi tessellation
23 account
24 alloy
25 approach
26 behavior
27 boundaries
28 center
29 comprehensive model
30 connectors
31 constitutive law
32 damper elements
33 data
34 defects
35 deformation
36 development
37 diffusion model
38 elastoviscoplastic constitutive law
39 element method
40 elements
41 experimental data
42 finite element method
43 finite elements
44 first time
45 flexible connectors
46 fraction
47 grain boundaries
48 grain structure
49 grains
50 hot tearing
51 hot tearing defects
52 indispensible step
53 intergranular regions
54 law
55 layer
56 liquid layer
57 literature
58 localization
59 localization of strain
60 macroscale
61 material mechanical behavior
62 mechanical behavior
63 metallic alloys
64 method
65 model
66 model predictions
67 morphology
68 necessary step
69 nucleation centers
70 overall mechanical behavior
71 parallel
72 prediction
73 quantitative predictions
74 region
75 results
76 semisolid alloy
77 simulations
78 solid grains
79 solidification
80 solidification model
81 solid–liquid structures
82 solute diffusion model
83 spring elements
84 step
85 strains
86 stress-strain simulation
87 structure
88 tearing
89 tearing defects
90 tessellation
91 time
92 schema:name Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method
93 schema:pagination 239-248
94 schema:productId Ncf1e22fefaeb4a2594d1cb5209a1c788
95 Nfc371bc49e79454ea582fac58f3aef6e
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024940741
97 https://doi.org/10.1007/s11661-010-0491-0
98 schema:sdDatePublished 2022-12-01T06:28
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N1031cff45e864a489dfb0e56bc8360e0
101 schema:url https://doi.org/10.1007/s11661-010-0491-0
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N1031cff45e864a489dfb0e56bc8360e0 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N225d65185f79477ab863b42be5328b8b rdf:first sg:person.013657516157.10
108 rdf:rest rdf:nil
109 N38c80f0ec2884595ba680cc1e73118ef schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N50446d4317f94fd2bc18a980267e0fba schema:volumeNumber 42
112 rdf:type schema:PublicationVolume
113 N57ca6171b08d4ddb86cea6131a64e4af rdf:first sg:person.01272103526.75
114 rdf:rest Nb1a0e736dbc14a0494f82214838deee4
115 N8a473aed4fb047269b26371ca9f49cfb rdf:first sg:person.013564633720.21
116 rdf:rest N57ca6171b08d4ddb86cea6131a64e4af
117 Nb1a0e736dbc14a0494f82214838deee4 rdf:first sg:person.01212610757.30
118 rdf:rest N225d65185f79477ab863b42be5328b8b
119 Ncf1e22fefaeb4a2594d1cb5209a1c788 schema:name dimensions_id
120 schema:value pub.1024940741
121 rdf:type schema:PropertyValue
122 Nfc371bc49e79454ea582fac58f3aef6e schema:name doi
123 schema:value 10.1007/s11661-010-0491-0
124 rdf:type schema:PropertyValue
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1136292 schema:issn 1073-5623
132 1543-1940
133 schema:name Metallurgical and Materials Transactions A
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01212610757.30 schema:affiliation grid-institutes:grid.5333.6
137 schema:familyName Drezet
138 schema:givenName J.-M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30
140 rdf:type schema:Person
141 sg:person.01272103526.75 schema:affiliation grid-institutes:grid.17091.3e
142 schema:familyName Phillion
143 schema:givenName A. B.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272103526.75
145 rdf:type schema:Person
146 sg:person.013564633720.21 schema:affiliation grid-institutes:grid.5333.6
147 schema:familyName Sistaninia
148 schema:givenName M.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564633720.21
150 rdf:type schema:Person
151 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
152 schema:familyName Rappaz
153 schema:givenName M.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
155 rdf:type schema:Person
156 sg:pub.10.1007/bf02651234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029470619
157 https://doi.org/10.1007/bf02651234
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf02664583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027480549
160 https://doi.org/10.1007/bf02664583
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11661-002-0040-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019859586
163 https://doi.org/10.1007/s11661-002-0040-6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11661-003-0083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046995640
166 https://doi.org/10.1007/s11661-003-0083-3
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11661-005-0244-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016571104
169 https://doi.org/10.1007/s11661-005-0244-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11661-008-9772-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064057
172 https://doi.org/10.1007/s11661-008-9772-2
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11661-999-0334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049786
175 https://doi.org/10.1007/s11661-999-0334-z
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11663-001-0124-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047728867
178 https://doi.org/10.1007/s11663-001-0124-5
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.17091.3e schema:alternateName School of Engineering, University of British Columbia, V1V 1V7, Kelowna, Canada
181 schema:name Computational Materials Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
182 School of Engineering, University of British Columbia, V1V 1V7, Kelowna, Canada
183 rdf:type schema:Organization
184 grid-institutes:grid.5333.6 schema:alternateName Computational Materials Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
185 schema:name Computational Materials Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...