Two-Phase Modeling of Hot Tearing in Aluminum Alloys: Applications of a Semicoupled Method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-02-05

AUTHORS

V. Mathier, S. Vernède, P. Jarry, M. Rappaz

ABSTRACT

Hot tearing formation in both a classical tensile test and during direct chill (DC) casting of aluminum alloys has been modeled using a semicoupled, two-phase approach. Following a thermal calculation, the deformation of the mushy solid is computed using a compressive rheological model that neglects the pressure of the intergranular liquid. The nonzero expansion/compression of the solid and the solidification shrinkage are then introduced as source terms for the calculation of the pressure drop and pore formation in the liquid phase. A comparison between the simulation results and experimental data permits a detailed understanding of the specific conditions under which hot tears form under given conditions. It is shown that the failure modes can be quite different for these two experiments and that, as a consequence, the appropriate hot tearing criterion may differ. It is foreseen that a fully predictive theoretical tool could be obtained by coupling such a model with a granular approach. These two techniques do, indeed, permit coverage of the range of the length scales and the physical phenomena involved in hot tearing. More... »

PAGES

943

References to SciGraph publications

  • 2003-09. The importance of viscoplastic strain rate in the formation of center cracks during the start-up phase of direct-chill cast aluminum extrusion ingots in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2005-02. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-10. TearSim: A two-phase model addressing hot tearing formation during aluminum direct chill casting in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-10. Modeling of ingot distortions during direct chill casting of aluminum alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2001-08. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2008-04-16. A New Tensile Test for Aluminum Alloys in the Mushy State: Experimental Method and Numerical Modeling in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1999-02. A new hot-tearing criterion in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2005-06. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2005-06. Rheological behavior of Al-Cu alloys during solidification constitutive modeling, experimental identification, and numerical study in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-07. Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: Applications to aluminum alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-07. Thermal strain in the mushy zone for aluminum alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2002-07. Constitutive behavior of as-cast AA1050, AA3104, and AA5182 in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-03. Thermal strain in the mushy zone related to hot tearing in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-008-9772-2

    DOI

    http://dx.doi.org/10.1007/s11661-008-9772-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052064057


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mathier", 
            "givenName": "V.", 
            "id": "sg:person.010443135677.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443135677.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alcan CRV, FR-38341, Voreppe, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Alcan CRV, FR-38341, Voreppe, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vern\u00e8de", 
            "givenName": "S.", 
            "id": "sg:person.014504503161.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504503161.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alcan CRV, FR-38341, Voreppe, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Alcan CRV, FR-38341, Voreppe, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jarry", 
            "givenName": "P.", 
            "id": "sg:person.015370620771.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370620771.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-005-0245-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043188765", 
              "https://doi.org/10.1007/s11661-005-0245-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-008-9529-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048116742", 
              "https://doi.org/10.1007/s11661-008-9529-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-0030-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036224689", 
              "https://doi.org/10.1007/s11661-002-0030-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-005-0244-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016571104", 
              "https://doi.org/10.1007/s11661-005-0244-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-006-0188-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025500516", 
              "https://doi.org/10.1007/s11661-006-0188-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0334-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026049786", 
              "https://doi.org/10.1007/s11661-999-0334-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-001-0124-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047728867", 
              "https://doi.org/10.1007/s11663-001-0124-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-003-0159-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018192667", 
              "https://doi.org/10.1007/s11661-003-0159-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-005-0314-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044628975", 
              "https://doi.org/10.1007/s11661-005-0314-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-0041-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004220343", 
              "https://doi.org/10.1007/s11661-002-0041-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02663872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016278964", 
              "https://doi.org/10.1007/bf02663872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02586141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009770314", 
              "https://doi.org/10.1007/bf02586141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-006-0042-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053235865", 
              "https://doi.org/10.1007/s11661-006-0042-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-02-05", 
        "datePublishedReg": "2009-02-05", 
        "description": "Hot tearing formation in both a classical tensile test and during direct chill (DC) casting of aluminum alloys has been modeled using a semicoupled, two-phase approach. Following a thermal calculation, the deformation of the mushy solid is computed using a compressive rheological model that neglects the pressure of the intergranular liquid. The nonzero expansion/compression of the solid and the solidification shrinkage are then introduced as source terms for the calculation of the pressure drop and pore formation in the liquid phase. A comparison between the simulation results and experimental data permits a detailed understanding of the specific conditions under which hot tears form under given conditions. It is shown that the failure modes can be quite different for these two experiments and that, as a consequence, the appropriate hot tearing criterion may differ. It is foreseen that a fully predictive theoretical tool could be obtained by coupling such a model with a granular approach. These two techniques do, indeed, permit coverage of the range of the length scales and the physical phenomena involved in hot tearing.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-008-9772-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "direct chill", 
          "aluminum alloy", 
          "hot tearing", 
          "hot tearing formation", 
          "hot tearing criteria", 
          "two-phase modeling", 
          "classical tensile tests", 
          "solidification shrinkage", 
          "intergranular liquid", 
          "tensile tests", 
          "hot tears", 
          "thermal calculations", 
          "pressure drop", 
          "failure modes", 
          "expansion/compression", 
          "rheological model", 
          "liquid phase", 
          "simulation results", 
          "physical phenomena", 
          "source term", 
          "alloy", 
          "length scales", 
          "experimental data", 
          "two-phase approach", 
          "pore formation", 
          "tearing", 
          "deformation", 
          "mushy", 
          "shrinkage", 
          "liquid", 
          "calculations", 
          "drop", 
          "conditions", 
          "specific conditions", 
          "modeling", 
          "compression", 
          "detailed understanding", 
          "granular approach", 
          "model", 
          "mode", 
          "applications", 
          "formation", 
          "pressure", 
          "phase", 
          "range", 
          "technique", 
          "approach", 
          "experiments", 
          "phenomenon", 
          "method", 
          "test", 
          "results", 
          "comparison", 
          "theoretical tools", 
          "terms", 
          "scale", 
          "tool", 
          "coverage", 
          "criteria", 
          "chills", 
          "data", 
          "understanding", 
          "consequences", 
          "tears"
        ], 
        "name": "Two-Phase Modeling of Hot Tearing in Aluminum Alloys: Applications of a Semicoupled Method", 
        "pagination": "943", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052064057"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-008-9772-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-008-9772-2", 
          "https://app.dimensions.ai/details/publication/pub.1052064057"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-008-9772-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9772-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9772-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9772-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9772-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      101 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-008-9772-2 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1102921a1f9c4e06be68837a32d3ada8
    4 schema:citation sg:pub.10.1007/bf02586141
    5 sg:pub.10.1007/bf02663872
    6 sg:pub.10.1007/s11661-002-0030-8
    7 sg:pub.10.1007/s11661-002-0041-5
    8 sg:pub.10.1007/s11661-003-0159-0
    9 sg:pub.10.1007/s11661-005-0244-7
    10 sg:pub.10.1007/s11661-005-0245-6
    11 sg:pub.10.1007/s11661-005-0314-x
    12 sg:pub.10.1007/s11661-006-0042-x
    13 sg:pub.10.1007/s11661-006-0188-6
    14 sg:pub.10.1007/s11661-008-9529-y
    15 sg:pub.10.1007/s11661-999-0334-z
    16 sg:pub.10.1007/s11663-001-0124-5
    17 schema:datePublished 2009-02-05
    18 schema:datePublishedReg 2009-02-05
    19 schema:description Hot tearing formation in both a classical tensile test and during direct chill (DC) casting of aluminum alloys has been modeled using a semicoupled, two-phase approach. Following a thermal calculation, the deformation of the mushy solid is computed using a compressive rheological model that neglects the pressure of the intergranular liquid. The nonzero expansion/compression of the solid and the solidification shrinkage are then introduced as source terms for the calculation of the pressure drop and pore formation in the liquid phase. A comparison between the simulation results and experimental data permits a detailed understanding of the specific conditions under which hot tears form under given conditions. It is shown that the failure modes can be quite different for these two experiments and that, as a consequence, the appropriate hot tearing criterion may differ. It is foreseen that a fully predictive theoretical tool could be obtained by coupling such a model with a granular approach. These two techniques do, indeed, permit coverage of the range of the length scales and the physical phenomena involved in hot tearing.
    20 schema:genre article
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N541f15d1a5af4ce3be0f95bc91fecd47
    23 N609ecd3c2e26435ca2e0969d8bf82911
    24 sg:journal.1136292
    25 schema:keywords alloy
    26 aluminum alloy
    27 applications
    28 approach
    29 calculations
    30 chills
    31 classical tensile tests
    32 comparison
    33 compression
    34 conditions
    35 consequences
    36 coverage
    37 criteria
    38 data
    39 deformation
    40 detailed understanding
    41 direct chill
    42 drop
    43 expansion/compression
    44 experimental data
    45 experiments
    46 failure modes
    47 formation
    48 granular approach
    49 hot tearing
    50 hot tearing criteria
    51 hot tearing formation
    52 hot tears
    53 intergranular liquid
    54 length scales
    55 liquid
    56 liquid phase
    57 method
    58 mode
    59 model
    60 modeling
    61 mushy
    62 phase
    63 phenomenon
    64 physical phenomena
    65 pore formation
    66 pressure
    67 pressure drop
    68 range
    69 results
    70 rheological model
    71 scale
    72 shrinkage
    73 simulation results
    74 solidification shrinkage
    75 source term
    76 specific conditions
    77 tearing
    78 tears
    79 technique
    80 tensile tests
    81 terms
    82 test
    83 theoretical tools
    84 thermal calculations
    85 tool
    86 two-phase approach
    87 two-phase modeling
    88 understanding
    89 schema:name Two-Phase Modeling of Hot Tearing in Aluminum Alloys: Applications of a Semicoupled Method
    90 schema:pagination 943
    91 schema:productId N587972c6d3cb40bc9cc0a96c35d94f23
    92 N79f5b13be9b641c09de28099ef417ec3
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064057
    94 https://doi.org/10.1007/s11661-008-9772-2
    95 schema:sdDatePublished 2022-12-01T06:27
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nf05b26c76a334f659680405ec3a1514a
    98 schema:url https://doi.org/10.1007/s11661-008-9772-2
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N0229517cc7394595b281e3d781714e74 rdf:first sg:person.014504503161.85
    103 rdf:rest N719259b99d7d4e8693e0508df09c62ec
    104 N1102921a1f9c4e06be68837a32d3ada8 rdf:first sg:person.010443135677.27
    105 rdf:rest N0229517cc7394595b281e3d781714e74
    106 N19655a60e3574f37b9d34dd3cbc8268c rdf:first sg:person.013657516157.10
    107 rdf:rest rdf:nil
    108 N541f15d1a5af4ce3be0f95bc91fecd47 schema:volumeNumber 40
    109 rdf:type schema:PublicationVolume
    110 N587972c6d3cb40bc9cc0a96c35d94f23 schema:name doi
    111 schema:value 10.1007/s11661-008-9772-2
    112 rdf:type schema:PropertyValue
    113 N609ecd3c2e26435ca2e0969d8bf82911 schema:issueNumber 4
    114 rdf:type schema:PublicationIssue
    115 N719259b99d7d4e8693e0508df09c62ec rdf:first sg:person.015370620771.62
    116 rdf:rest N19655a60e3574f37b9d34dd3cbc8268c
    117 N79f5b13be9b641c09de28099ef417ec3 schema:name dimensions_id
    118 schema:value pub.1052064057
    119 rdf:type schema:PropertyValue
    120 Nf05b26c76a334f659680405ec3a1514a schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Engineering
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Materials Engineering
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1136292 schema:issn 1073-5623
    129 1543-1940
    130 schema:name Metallurgical and Materials Transactions A
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.010443135677.27 schema:affiliation grid-institutes:grid.5333.6
    134 schema:familyName Mathier
    135 schema:givenName V.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010443135677.27
    137 rdf:type schema:Person
    138 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    139 schema:familyName Rappaz
    140 schema:givenName M.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    142 rdf:type schema:Person
    143 sg:person.014504503161.85 schema:affiliation grid-institutes:None
    144 schema:familyName Vernède
    145 schema:givenName S.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504503161.85
    147 rdf:type schema:Person
    148 sg:person.015370620771.62 schema:affiliation grid-institutes:None
    149 schema:familyName Jarry
    150 schema:givenName P.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370620771.62
    152 rdf:type schema:Person
    153 sg:pub.10.1007/bf02586141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770314
    154 https://doi.org/10.1007/bf02586141
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf02663872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016278964
    157 https://doi.org/10.1007/bf02663872
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11661-002-0030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036224689
    160 https://doi.org/10.1007/s11661-002-0030-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11661-002-0041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004220343
    163 https://doi.org/10.1007/s11661-002-0041-5
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11661-003-0159-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018192667
    166 https://doi.org/10.1007/s11661-003-0159-0
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11661-005-0244-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016571104
    169 https://doi.org/10.1007/s11661-005-0244-7
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11661-005-0245-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043188765
    172 https://doi.org/10.1007/s11661-005-0245-6
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11661-005-0314-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044628975
    175 https://doi.org/10.1007/s11661-005-0314-x
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11661-006-0042-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053235865
    178 https://doi.org/10.1007/s11661-006-0042-x
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11661-006-0188-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025500516
    181 https://doi.org/10.1007/s11661-006-0188-6
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11661-008-9529-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048116742
    184 https://doi.org/10.1007/s11661-008-9529-y
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11661-999-0334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049786
    187 https://doi.org/10.1007/s11661-999-0334-z
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s11663-001-0124-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047728867
    190 https://doi.org/10.1007/s11663-001-0124-5
    191 rdf:type schema:CreativeWork
    192 grid-institutes:None schema:alternateName Alcan CRV, FR-38341, Voreppe, France
    193 schema:name Alcan CRV, FR-38341, Voreppe, France
    194 rdf:type schema:Organization
    195 grid-institutes:grid.5333.6 schema:alternateName Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    196 schema:name Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...