Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-09

AUTHORS

B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, E.J. Lavernia

ABSTRACT

Laser-engineered net shaping (LENS) is a rapid direct manufacturing process. The LENS process can be analyzed as a sequence of discrete events, given that it is a layer-by-layer process. The thermal history associated with the LENS process involves numerous reheating cycles. In this article, the thermal behavior during laser deposition with LENS is simulated numerically by using the alternate-direction explicit (ADE) finite difference method (FDM). The simulation results showed that deposited material experiences a significant rapid quenching effect during the initial stages of deposition and can attain a very high cooling rate. With an increase in deposit thickness, the rapid quenching effect decreases and eventually disappears. The effects of the processing parameters on the thermal behavior of deposited materials were also simulated and analyzed. The objective of this study is to provide insight into the thermal history during the LENS process, where the ability to correlate process parameters to microstructural evolution is a motivating force. More... »

PAGES

2228-2236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-008-9557-7

DOI

http://dx.doi.org/10.1007/s11661-008-9557-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024687022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of California, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "B.", 
        "id": "sg:person.011654616513.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654616513.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of California, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Y.", 
        "id": "sg:person.012120733335.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120733335.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories California", 
          "id": "https://www.grid.ac/institutes/grid.474523.3", 
          "name": [
            "Sandia National Laboratories, 94551-0969, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smugeresky", 
        "givenName": "J.E.", 
        "id": "sg:person.07632314723.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632314723.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of California, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schoenung", 
        "givenName": "J.M.", 
        "id": "sg:person.0740573341.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740573341.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of California, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavernia", 
        "givenName": "E.J.", 
        "id": "sg:person.01023457060.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023457060.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0017-9310(73)90202-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017285744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017710738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017710738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/sur.1996.12.3.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020970734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)90421-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023791980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)90421-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023791980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-001-0066-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024289976", 
          "https://doi.org/10.1007/s11837-001-0066-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-004-1016-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025223677", 
          "https://doi.org/10.1007/s11661-004-1016-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(78)90058-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027412711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(78)90058-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027412711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1468-6996(01)00047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030981291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-999-0086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032545344", 
          "https://doi.org/10.1007/s11663-999-0086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-999-0086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032545344", 
          "https://doi.org/10.1007/s11663-999-0086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-3069(99)00016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.04.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042199672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(92)90015-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045854145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(92)90015-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045854145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2911416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062095573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3691590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062140395"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "Laser-engineered net shaping (LENS) is a rapid direct manufacturing process. The LENS process can be analyzed as a sequence of discrete events, given that it is a layer-by-layer process. The thermal history associated with the LENS process involves numerous reheating cycles. In this article, the thermal behavior during laser deposition with LENS is simulated numerically by using the alternate-direction explicit (ADE) finite difference method (FDM). The simulation results showed that deposited material experiences a significant rapid quenching effect during the initial stages of deposition and can attain a very high cooling rate. With an increase in deposit thickness, the rapid quenching effect decreases and eventually disappears. The effects of the processing parameters on the thermal behavior of deposited materials were also simulated and analyzed. The objective of this study is to provide insight into the thermal history during the LENS process, where the ability to correlate process parameters to microstructural evolution is a motivating force.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11661-008-9557-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7784496", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3050547", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations", 
    "pagination": "2228-2236", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "759bf1f41a9f9f5f081bf830eeb055775ae99bd95b065aea06f546353aefa17f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-008-9557-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024687022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-008-9557-7", 
      "https://app.dimensions.ai/details/publication/pub.1024687022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11661-008-9557-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9557-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9557-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9557-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9557-7'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-008-9557-7 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author Na4bfb5da45b94b33b5df171e93dccc31
4 schema:citation sg:pub.10.1007/s11661-004-1016-5
5 sg:pub.10.1007/s11663-999-0086-6
6 sg:pub.10.1007/s11837-001-0066-z
7 https://app.dimensions.ai/details/publication/pub.1017710738
8 https://doi.org/10.1016/0017-9310(73)90202-0
9 https://doi.org/10.1016/0017-9310(78)90058-3
10 https://doi.org/10.1016/0017-9310(92)90015-k
11 https://doi.org/10.1016/0956-7151(94)90421-9
12 https://doi.org/10.1016/j.msea.2006.04.079
13 https://doi.org/10.1016/s0261-3069(99)00016-3
14 https://doi.org/10.1016/s1468-6996(01)00047-x
15 https://doi.org/10.1115/1.2911416
16 https://doi.org/10.1115/1.3691590
17 https://doi.org/10.1179/sur.1996.12.3.251
18 schema:datePublished 2008-09
19 schema:datePublishedReg 2008-09-01
20 schema:description Laser-engineered net shaping (LENS) is a rapid direct manufacturing process. The LENS process can be analyzed as a sequence of discrete events, given that it is a layer-by-layer process. The thermal history associated with the LENS process involves numerous reheating cycles. In this article, the thermal behavior during laser deposition with LENS is simulated numerically by using the alternate-direction explicit (ADE) finite difference method (FDM). The simulation results showed that deposited material experiences a significant rapid quenching effect during the initial stages of deposition and can attain a very high cooling rate. With an increase in deposit thickness, the rapid quenching effect decreases and eventually disappears. The effects of the processing parameters on the thermal behavior of deposited materials were also simulated and analyzed. The objective of this study is to provide insight into the thermal history during the LENS process, where the ability to correlate process parameters to microstructural evolution is a motivating force.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Na485c32a1d294c878236fb35acbfbf1e
25 Ne4449a169a144bb4b630616b820ab150
26 sg:journal.1136292
27 schema:name Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations
28 schema:pagination 2228-2236
29 schema:productId N182085a912e64131af18a06b9c91e39b
30 N7ee980f3b6b84233acc6681b00b2ef93
31 Na4dbff1c01c84c1d8672a2ef465e286a
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024687022
33 https://doi.org/10.1007/s11661-008-9557-7
34 schema:sdDatePublished 2019-04-10T18:22
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb4a94558dc064b99b5024dd09b076764
37 schema:url http://link.springer.com/10.1007%2Fs11661-008-9557-7
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N182085a912e64131af18a06b9c91e39b schema:name dimensions_id
42 schema:value pub.1024687022
43 rdf:type schema:PropertyValue
44 N4ffab48c3eb44b788e4f56f164c368cc rdf:first sg:person.0740573341.69
45 rdf:rest N808611ed308f42ae8e24ee6f7a778124
46 N7ee980f3b6b84233acc6681b00b2ef93 schema:name readcube_id
47 schema:value 759bf1f41a9f9f5f081bf830eeb055775ae99bd95b065aea06f546353aefa17f
48 rdf:type schema:PropertyValue
49 N808611ed308f42ae8e24ee6f7a778124 rdf:first sg:person.01023457060.79
50 rdf:rest rdf:nil
51 N840aeb2ca6224cd594f3c4ede40f6fbd rdf:first sg:person.07632314723.31
52 rdf:rest N4ffab48c3eb44b788e4f56f164c368cc
53 Na3e6c8deaa1443198ec5473f5d932a8d rdf:first sg:person.012120733335.18
54 rdf:rest N840aeb2ca6224cd594f3c4ede40f6fbd
55 Na485c32a1d294c878236fb35acbfbf1e schema:issueNumber 9
56 rdf:type schema:PublicationIssue
57 Na4bfb5da45b94b33b5df171e93dccc31 rdf:first sg:person.011654616513.23
58 rdf:rest Na3e6c8deaa1443198ec5473f5d932a8d
59 Na4dbff1c01c84c1d8672a2ef465e286a schema:name doi
60 schema:value 10.1007/s11661-008-9557-7
61 rdf:type schema:PropertyValue
62 Nb4a94558dc064b99b5024dd09b076764 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ne4449a169a144bb4b630616b820ab150 schema:volumeNumber 39
65 rdf:type schema:PublicationVolume
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
70 schema:name Manufacturing Engineering
71 rdf:type schema:DefinedTerm
72 sg:grant.3050547 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-008-9557-7
73 rdf:type schema:MonetaryGrant
74 sg:grant.7784496 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-008-9557-7
75 rdf:type schema:MonetaryGrant
76 sg:journal.1136292 schema:issn 1073-5623
77 1543-1940
78 schema:name Metallurgical and Materials Transactions A
79 rdf:type schema:Periodical
80 sg:person.01023457060.79 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
81 schema:familyName Lavernia
82 schema:givenName E.J.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023457060.79
84 rdf:type schema:Person
85 sg:person.011654616513.23 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
86 schema:familyName Zheng
87 schema:givenName B.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654616513.23
89 rdf:type schema:Person
90 sg:person.012120733335.18 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
91 schema:familyName Zhou
92 schema:givenName Y.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120733335.18
94 rdf:type schema:Person
95 sg:person.0740573341.69 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
96 schema:familyName Schoenung
97 schema:givenName J.M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740573341.69
99 rdf:type schema:Person
100 sg:person.07632314723.31 schema:affiliation https://www.grid.ac/institutes/grid.474523.3
101 schema:familyName Smugeresky
102 schema:givenName J.E.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632314723.31
104 rdf:type schema:Person
105 sg:pub.10.1007/s11661-004-1016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025223677
106 https://doi.org/10.1007/s11661-004-1016-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11663-999-0086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032545344
109 https://doi.org/10.1007/s11663-999-0086-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11837-001-0066-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289976
112 https://doi.org/10.1007/s11837-001-0066-z
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1017710738 schema:CreativeWork
115 https://doi.org/10.1016/0017-9310(73)90202-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017285744
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0017-9310(78)90058-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027412711
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0017-9310(92)90015-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1045854145
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0956-7151(94)90421-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023791980
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.msea.2006.04.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042199672
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0261-3069(99)00016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038201340
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s1468-6996(01)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030981291
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1115/1.2911416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062095573
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1115/1.3691590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062140395
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1179/sur.1996.12.3.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020970734
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
136 schema:name Department of Chemical Engineering and Materials Science, University of California, 95616, Davis, CA, USA
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.474523.3 schema:alternateName Sandia National Laboratories California
139 schema:name Sandia National Laboratories, 94551-0969, Livermore, CA, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...