Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-05-22

AUTHORS

Frédéric Gonzales, Michel Rappaz

ABSTRACT

In a recent contribution, we have reported that dendrites in the aluminum-zinc binary system can change their growth direction continuously from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{100}}} \right\rangle } $$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{110}}} \right\rangle } $$\end{document} as the concentration of zinc CZn increases from 5 to 90 wt pct.[1] This was interpreted as an influence of the hcp Zn element on the low anisotropy of the solid-liquid interfacial energy of aluminum. Seaweed morphologies were even observed at the start and end of this so-called “dendrite orientation transition” (DOT), i.e., for CZn ≈ 30 and 55 wt pct. In the present work, we analyze how this DOT influences the selection of grains and the evolution of the texture in directionally solidified (DS) specimens. The solidification texturing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {hk{\text{0}}} \right\rangle } $$\end{document} dendritic specimens is shown to be similar to that occurring in normal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{100}}} \right\rangle } $$\end{document} specimens. It is analyzed on a similar basis by considering a random orientation distribution of nuclei at the surface of the chill plate and a minimum undercooling criterion. This produces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {hk{\text{0}}} \right\rangle } $$\end{document} textures with grains that look fairly “equiaxed” in transverse sections. For seaweed morphologies, which also exhibit an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {hk{\text{0}}} \right\rangle } $$\end{document} texture parallel to the thermal gradient, the grain selection is slower and the grains appear more elongated in transverse sections. Their elongation occurs along a (001) plane, i.e., along a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {1\ifmmode\expandafter\bar\else\expandafter\=\fi{2}0} \right\rangle } $$\end{document} direction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {210} \right\rangle } $$\end{document} seaweeds (CZn = 30 wt pct) and along a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {1\ifmmode\expandafter\bar\else\expandafter\=\fi{1}0} \right\rangle } $$\end{document} direction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{110}}} \right\rangle } $$\end{document} seaweeds (CZn = 55 wt pct). The scanning electron microscopy (SEM) observations reveal that this elongation is accompanied by a microsegregation pattern that is mainly parallel to (001) planes. This indicates that seaweeds at the onset and end of the DOT grow with some type of layered structures, but their detailed growth and grain selection mechanisms are still unknown. More... »

PAGES

2148-2160

References to SciGraph publications

  • 2006-07-09. Orientation selection in dendritic evolution in NATURE MATERIALS
  • 1995-06. Grain texture evolution during the columnar growth of dendritic alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-09. Dendrite growth directions in aluminum-zinc alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-008-9546-x

    DOI

    http://dx.doi.org/10.1007/s11661-008-9546-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020301704


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzales", 
            "givenName": "Fr\u00e9d\u00e9ric", 
            "id": "sg:person.0667120200.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667120200.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "Michel", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02586112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013232379", 
              "https://doi.org/10.1007/bf02586112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023047602", 
              "https://doi.org/10.1038/nmat1693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008404524", 
              "https://doi.org/10.1007/bf02647605"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-05-22", 
        "datePublishedReg": "2008-05-22", 
        "description": "In a recent contribution, we have reported that dendrites in the aluminum-zinc binary system can change their growth direction continuously from \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {{\\text{100}}} \\right\\rangle } $$\\end{document} to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {{\\text{110}}} \\right\\rangle } $$\\end{document} as the concentration of zinc CZn increases from 5 to 90\u00a0wt pct.[1] This was interpreted as an influence of the hcp Zn element on the low anisotropy of the solid-liquid interfacial energy of aluminum. Seaweed morphologies were even observed at the start and end of this so-called \u201cdendrite orientation transition\u201d (DOT), i.e., for CZn\u00a0\u2248\u00a030 and 55\u00a0wt pct. In the present work, we analyze how this DOT influences the selection of grains and the evolution of the texture in directionally solidified (DS) specimens. The solidification texturing of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {hk{\\text{0}}} \\right\\rangle } $$\\end{document} dendritic specimens is shown to be similar to that occurring in normal \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {{\\text{100}}} \\right\\rangle } $$\\end{document} specimens. It is analyzed on a similar basis by considering a random orientation distribution of nuclei at the surface of the chill plate and a minimum undercooling criterion. This produces \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {hk{\\text{0}}} \\right\\rangle } $$\\end{document} textures with grains that look fairly \u201cequiaxed\u201d in transverse sections. For seaweed morphologies, which also exhibit an \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {hk{\\text{0}}} \\right\\rangle } $$\\end{document} texture parallel to the thermal gradient, the grain selection is slower and the grains appear more elongated in transverse sections. Their elongation occurs along a (001) plane, i.e., along a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {1\\ifmmode\\expandafter\\bar\\else\\expandafter\\=\\fi{2}0} \\right\\rangle } $$\\end{document} direction for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {210} \\right\\rangle } $$\\end{document} seaweeds (CZn\u00a0=\u00a030\u00a0wt pct) and along a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {1\\ifmmode\\expandafter\\bar\\else\\expandafter\\=\\fi{1}0} \\right\\rangle } $$\\end{document} direction for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\left\\langle {{\\text{110}}} \\right\\rangle } $$\\end{document} seaweeds (CZn\u00a0=\u00a055\u00a0wt pct). The scanning electron microscopy (SEM) observations reveal that this elongation is accompanied by a microsegregation pattern that is mainly parallel to (001) planes. This indicates that seaweeds at the onset and end of the DOT grow with some type of layered structures, but their detailed growth and grain selection mechanisms are still unknown.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-008-9546-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "keywords": [
          "transverse sections", 
          "onset", 
          "increase", 
          "start", 
          "end", 
          "specimens", 
          "nucleus", 
          "criteria", 
          "concentration", 
          "sections", 
          "mechanism", 
          "selection", 
          "patterns", 
          "types", 
          "morphology", 
          "similar basis", 
          "growth", 
          "influence", 
          "wt", 
          "basis", 
          "parallel", 
          "observations", 
          "present work", 
          "elongation", 
          "contribution", 
          "system", 
          "direction", 
          "distribution", 
          "plate", 
          "recent contributions", 
          "CZn", 
          "gradient", 
          "detailed growth", 
          "elements", 
          "work", 
          "plane", 
          "transition", 
          "evolution", 
          "surface", 
          "microscopy observations", 
          "selection mechanism", 
          "dots", 
          "scanning electron microscopy observations", 
          "electron microscopy observations", 
          "structure", 
          "low anisotropy", 
          "texture", 
          "anisotropy", 
          "grains", 
          "Zn elements", 
          "aluminum", 
          "energy", 
          "random orientation distribution", 
          "grain selection", 
          "growth direction", 
          "orientation transition", 
          "layered structure", 
          "binary systems", 
          "texturing", 
          "orientation distribution", 
          "thermal gradient", 
          "Al-Zn alloy", 
          "alloy", 
          "solid\u2013liquid interfacial energy", 
          "interfacial energy", 
          "seaweed morphology", 
          "selection of grains", 
          "solidification texturing", 
          "chill plate", 
          "minimum undercooling criterion", 
          "texture parallel", 
          "microsegregation patterns", 
          "grain selection mechanism", 
          "texture evolution"
        ], 
        "name": "Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys", 
        "pagination": "2148-2160", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020301704"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-008-9546-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-008-9546-x", 
          "https://app.dimensions.ai/details/publication/pub.1020301704"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_454.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-008-9546-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9546-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9546-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9546-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-008-9546-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      101 URIs      90 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-008-9546-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na79128def7154f18bd377753a5c94a62
    4 schema:citation sg:pub.10.1007/bf02586112
    5 sg:pub.10.1007/bf02647605
    6 sg:pub.10.1038/nmat1693
    7 schema:datePublished 2008-05-22
    8 schema:datePublishedReg 2008-05-22
    9 schema:description In a recent contribution, we have reported that dendrites in the aluminum-zinc binary system can change their growth direction continuously from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{100}}} \right\rangle } $$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{110}}} \right\rangle } $$\end{document} as the concentration of zinc CZn increases from 5 to 90 wt pct.[1] This was interpreted as an influence of the hcp Zn element on the low anisotropy of the solid-liquid interfacial energy of aluminum. Seaweed morphologies were even observed at the start and end of this so-called “dendrite orientation transition” (DOT), i.e., for CZn ≈ 30 and 55 wt pct. In the present work, we analyze how this DOT influences the selection of grains and the evolution of the texture in directionally solidified (DS) specimens. The solidification texturing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {hk{\text{0}}} \right\rangle } $$\end{document} dendritic specimens is shown to be similar to that occurring in normal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{100}}} \right\rangle } $$\end{document} specimens. It is analyzed on a similar basis by considering a random orientation distribution of nuclei at the surface of the chill plate and a minimum undercooling criterion. This produces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {hk{\text{0}}} \right\rangle } $$\end{document} textures with grains that look fairly “equiaxed” in transverse sections. For seaweed morphologies, which also exhibit an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {hk{\text{0}}} \right\rangle } $$\end{document} texture parallel to the thermal gradient, the grain selection is slower and the grains appear more elongated in transverse sections. Their elongation occurs along a (001) plane, i.e., along a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {1\ifmmode\expandafter\bar\else\expandafter\=\fi{2}0} \right\rangle } $$\end{document} direction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {210} \right\rangle } $$\end{document} seaweeds (CZn = 30 wt pct) and along a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {1\ifmmode\expandafter\bar\else\expandafter\=\fi{1}0} \right\rangle } $$\end{document} direction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\langle {{\text{110}}} \right\rangle } $$\end{document} seaweeds (CZn = 55 wt pct). The scanning electron microscopy (SEM) observations reveal that this elongation is accompanied by a microsegregation pattern that is mainly parallel to (001) planes. This indicates that seaweeds at the onset and end of the DOT grow with some type of layered structures, but their detailed growth and grain selection mechanisms are still unknown.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N018ca61d1d504f0fb4ea48732391a6f6
    13 Ncaeb5e2a36f840f2b2819b325cc89ab4
    14 sg:journal.1136292
    15 schema:keywords Al-Zn alloy
    16 CZn
    17 Zn elements
    18 alloy
    19 aluminum
    20 anisotropy
    21 basis
    22 binary systems
    23 chill plate
    24 concentration
    25 contribution
    26 criteria
    27 detailed growth
    28 direction
    29 distribution
    30 dots
    31 electron microscopy observations
    32 elements
    33 elongation
    34 end
    35 energy
    36 evolution
    37 gradient
    38 grain selection
    39 grain selection mechanism
    40 grains
    41 growth
    42 growth direction
    43 increase
    44 influence
    45 interfacial energy
    46 layered structure
    47 low anisotropy
    48 mechanism
    49 microscopy observations
    50 microsegregation patterns
    51 minimum undercooling criterion
    52 morphology
    53 nucleus
    54 observations
    55 onset
    56 orientation distribution
    57 orientation transition
    58 parallel
    59 patterns
    60 plane
    61 plate
    62 present work
    63 random orientation distribution
    64 recent contributions
    65 scanning electron microscopy observations
    66 seaweed morphology
    67 sections
    68 selection
    69 selection mechanism
    70 selection of grains
    71 similar basis
    72 solidification texturing
    73 solid–liquid interfacial energy
    74 specimens
    75 start
    76 structure
    77 surface
    78 system
    79 texture
    80 texture evolution
    81 texture parallel
    82 texturing
    83 thermal gradient
    84 transition
    85 transverse sections
    86 types
    87 work
    88 wt
    89 schema:name Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys
    90 schema:pagination 2148-2160
    91 schema:productId N2978f61d857a45eea7f7eae8a02db716
    92 Nb0a0298f46a14ac7aa70628c80f11a93
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020301704
    94 https://doi.org/10.1007/s11661-008-9546-x
    95 schema:sdDatePublished 2022-11-24T20:52
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N9a644b4b6e5e46139909d850a4b34466
    98 schema:url https://doi.org/10.1007/s11661-008-9546-x
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N018ca61d1d504f0fb4ea48732391a6f6 schema:volumeNumber 39
    103 rdf:type schema:PublicationVolume
    104 N2978f61d857a45eea7f7eae8a02db716 schema:name dimensions_id
    105 schema:value pub.1020301704
    106 rdf:type schema:PropertyValue
    107 N2c2d422ba4b940e5a48628e57be72741 rdf:first sg:person.013657516157.10
    108 rdf:rest rdf:nil
    109 N9a644b4b6e5e46139909d850a4b34466 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Na79128def7154f18bd377753a5c94a62 rdf:first sg:person.0667120200.67
    112 rdf:rest N2c2d422ba4b940e5a48628e57be72741
    113 Nb0a0298f46a14ac7aa70628c80f11a93 schema:name doi
    114 schema:value 10.1007/s11661-008-9546-x
    115 rdf:type schema:PropertyValue
    116 Ncaeb5e2a36f840f2b2819b325cc89ab4 schema:issueNumber 9
    117 rdf:type schema:PublicationIssue
    118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Engineering
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Materials Engineering
    123 rdf:type schema:DefinedTerm
    124 sg:journal.1136292 schema:issn 1073-5623
    125 1543-1940
    126 schema:name Metallurgical and Materials Transactions A
    127 schema:publisher Springer Nature
    128 rdf:type schema:Periodical
    129 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    130 schema:familyName Rappaz
    131 schema:givenName Michel
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    133 rdf:type schema:Person
    134 sg:person.0667120200.67 schema:affiliation grid-institutes:grid.5333.6
    135 schema:familyName Gonzales
    136 schema:givenName Frédéric
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667120200.67
    138 rdf:type schema:Person
    139 sg:pub.10.1007/bf02586112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232379
    140 https://doi.org/10.1007/bf02586112
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02647605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404524
    143 https://doi.org/10.1007/bf02647605
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nmat1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023047602
    146 https://doi.org/10.1038/nmat1693
    147 rdf:type schema:CreativeWork
    148 grid-institutes:grid.5333.6 schema:alternateName Computational Materials Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    149 schema:name Computational Materials Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...