Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05-24

AUTHORS

S. Mokadem, C. Bezençon, A. Hauert, A. Jacot, W. Kurz

ABSTRACT

The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an “oriented-to-misoriented transition” (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbines. More... »

PAGES

1500-1510

References to SciGraph publications

  • 2003-03. Last-stage solidification of alloys: Theoretical model of dendrite-arm and grain coalescence in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1993-10-01. Thermodynamic calculations made easy in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1994-04. A simple but realistic model for laser cladding in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1999-12. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1992. Phase Transformations in Metals and Alloys in NONE
  • 1989-06. Development of microstructures in Fe−15Ni−15Cr single crystal electron beam welds in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z

    DOI

    http://dx.doi.org/10.1007/s11661-007-9172-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008834549


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Siemens Power Generation, D-45473, M\u00fclheim a.d. Ruhr, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne EPFL, Switzerland", 
                "Siemens Power Generation, D-45473, M\u00fclheim a.d. Ruhr, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mokadem", 
            "givenName": "S.", 
            "id": "sg:person.011424037503.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424037503.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bezen\u00e7on", 
            "givenName": "C.", 
            "id": "sg:person.013246662335.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246662335.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hauert", 
            "givenName": "A.", 
            "id": "sg:person.015164520657.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164520657.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jacot", 
            "givenName": "A.", 
            "id": "sg:person.011330035306.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330035306.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "W.", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02669134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031349439", 
              "https://doi.org/10.1007/bf02669134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02650147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052453538", 
              "https://doi.org/10.1007/bf02650147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0226-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030866354", 
              "https://doi.org/10.1007/s11661-999-0226-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3051-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705848", 
              "https://doi.org/10.1007/978-1-4899-3051-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02665211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020196097", 
              "https://doi.org/10.1007/bf02665211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-003-0083-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046995640", 
              "https://doi.org/10.1007/s11661-003-0083-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-05-24", 
        "datePublishedReg": "2007-05-24", 
        "description": "The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an \u201coriented-to-misoriented transition\u201d (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbines.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-007-9172-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "keywords": [
          "superalloy single crystals", 
          "columnar grains", 
          "solidification conditions", 
          "single-crystal gas turbine blades", 
          "nickel-base superalloy single crystals", 
          "specific solidification conditions", 
          "gas turbine blades", 
          "aircraft gas turbines", 
          "local solidification conditions", 
          "service life extension", 
          "heat flux direction", 
          "gas turbine", 
          "turbine blades", 
          "grain structure", 
          "processing window", 
          "columnar dendrites", 
          "epitaxial columnar", 
          "microstructure modeling", 
          "numerical modeling", 
          "new grains", 
          "equiaxed growth", 
          "analytical model", 
          "flux direction", 
          "substrate orientation", 
          "expensive components", 
          "life extension", 
          "crystal orientation", 
          "growth direction", 
          "single crystals", 
          "nonzero angle", 
          "laser repair", 
          "grains", 
          "different orientations", 
          "columnar", 
          "turbine", 
          "microstructure", 
          "casting", 
          "modeling", 
          "blades", 
          "growth competition", 
          "conditions", 
          "orientation", 
          "direction", 
          "growth axis", 
          "substrate", 
          "crystals", 
          "angle", 
          "laser treatment", 
          "effect", 
          "structure", 
          "regime", 
          "transition", 
          "experiments", 
          "window", 
          "model", 
          "components", 
          "account", 
          "formation", 
          "results", 
          "infiuence", 
          "axis", 
          "loss", 
          "dendrites", 
          "extension", 
          "repair", 
          "growth", 
          "cases", 
          "article", 
          "competition", 
          "definition", 
          "treatment"
        ], 
        "name": "Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations", 
        "pagination": "1500-1510", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008834549"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-007-9172-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-007-9172-z", 
          "https://app.dimensions.ai/details/publication/pub.1008834549"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_443.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-007-9172-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      22 PREDICATES      101 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-007-9172-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N78139893b40e4565b2a78b5e846b900a
    4 schema:citation sg:pub.10.1007/978-1-4899-3051-4
    5 sg:pub.10.1007/bf02650147
    6 sg:pub.10.1007/bf02665211
    7 sg:pub.10.1007/bf02669134
    8 sg:pub.10.1007/s11661-003-0083-3
    9 sg:pub.10.1007/s11661-999-0226-2
    10 schema:datePublished 2007-05-24
    11 schema:datePublishedReg 2007-05-24
    12 schema:description The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an “oriented-to-misoriented transition” (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbines.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf Nb6d3cf6ba0ad4876b7c387197173416f
    17 Nc195be7fda5c4de48cb77c83ddbb5210
    18 sg:journal.1136292
    19 schema:keywords account
    20 aircraft gas turbines
    21 analytical model
    22 angle
    23 article
    24 axis
    25 blades
    26 cases
    27 casting
    28 columnar
    29 columnar dendrites
    30 columnar grains
    31 competition
    32 components
    33 conditions
    34 crystal orientation
    35 crystals
    36 definition
    37 dendrites
    38 different orientations
    39 direction
    40 effect
    41 epitaxial columnar
    42 equiaxed growth
    43 expensive components
    44 experiments
    45 extension
    46 flux direction
    47 formation
    48 gas turbine
    49 gas turbine blades
    50 grain structure
    51 grains
    52 growth
    53 growth axis
    54 growth competition
    55 growth direction
    56 heat flux direction
    57 infiuence
    58 laser repair
    59 laser treatment
    60 life extension
    61 local solidification conditions
    62 loss
    63 microstructure
    64 microstructure modeling
    65 model
    66 modeling
    67 new grains
    68 nickel-base superalloy single crystals
    69 nonzero angle
    70 numerical modeling
    71 orientation
    72 processing window
    73 regime
    74 repair
    75 results
    76 service life extension
    77 single crystals
    78 single-crystal gas turbine blades
    79 solidification conditions
    80 specific solidification conditions
    81 structure
    82 substrate
    83 substrate orientation
    84 superalloy single crystals
    85 transition
    86 treatment
    87 turbine
    88 turbine blades
    89 window
    90 schema:name Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations
    91 schema:pagination 1500-1510
    92 schema:productId N0d7cca817a894a8d89d78a133fb8e53e
    93 Nfae4cda56b664e55ae4f9d2a0692fd28
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008834549
    95 https://doi.org/10.1007/s11661-007-9172-z
    96 schema:sdDatePublished 2022-05-10T09:56
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher Nf92e559504414035ba02d9e384b9ad5d
    99 schema:url https://doi.org/10.1007/s11661-007-9172-z
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N0d7cca817a894a8d89d78a133fb8e53e schema:name doi
    104 schema:value 10.1007/s11661-007-9172-z
    105 rdf:type schema:PropertyValue
    106 N21e58af9fee64dd3b8a155c525d8fab7 rdf:first sg:person.015164520657.65
    107 rdf:rest N715e4fd6898f451895410e7b0da127fb
    108 N2c8b4ab63eaa4973a53eb8fa8a4b418e rdf:first sg:person.013246662335.04
    109 rdf:rest N21e58af9fee64dd3b8a155c525d8fab7
    110 N715e4fd6898f451895410e7b0da127fb rdf:first sg:person.011330035306.12
    111 rdf:rest Nc6746dc2d712432ba1857dd32093cfd0
    112 N78139893b40e4565b2a78b5e846b900a rdf:first sg:person.011424037503.55
    113 rdf:rest N2c8b4ab63eaa4973a53eb8fa8a4b418e
    114 Nb6d3cf6ba0ad4876b7c387197173416f schema:issueNumber 7
    115 rdf:type schema:PublicationIssue
    116 Nc195be7fda5c4de48cb77c83ddbb5210 schema:volumeNumber 38
    117 rdf:type schema:PublicationVolume
    118 Nc6746dc2d712432ba1857dd32093cfd0 rdf:first sg:person.010017145423.41
    119 rdf:rest rdf:nil
    120 Nf92e559504414035ba02d9e384b9ad5d schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 Nfae4cda56b664e55ae4f9d2a0692fd28 schema:name dimensions_id
    123 schema:value pub.1008834549
    124 rdf:type schema:PropertyValue
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Materials Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1136292 schema:issn 1073-5623
    132 1543-1940
    133 schema:name Metallurgical and Materials Transactions A
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    137 schema:familyName Kurz
    138 schema:givenName W.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    140 rdf:type schema:Person
    141 sg:person.011330035306.12 schema:affiliation grid-institutes:grid.5333.6
    142 schema:familyName Jacot
    143 schema:givenName A.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330035306.12
    145 rdf:type schema:Person
    146 sg:person.011424037503.55 schema:affiliation grid-institutes:None
    147 schema:familyName Mokadem
    148 schema:givenName S.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424037503.55
    150 rdf:type schema:Person
    151 sg:person.013246662335.04 schema:affiliation grid-institutes:grid.5333.6
    152 schema:familyName Bezençon
    153 schema:givenName C.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246662335.04
    155 rdf:type schema:Person
    156 sg:person.015164520657.65 schema:affiliation grid-institutes:grid.5333.6
    157 schema:familyName Hauert
    158 schema:givenName A.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164520657.65
    160 rdf:type schema:Person
    161 sg:pub.10.1007/978-1-4899-3051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705848
    162 https://doi.org/10.1007/978-1-4899-3051-4
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf02650147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052453538
    165 https://doi.org/10.1007/bf02650147
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/bf02665211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196097
    168 https://doi.org/10.1007/bf02665211
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/bf02669134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349439
    171 https://doi.org/10.1007/bf02669134
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11661-003-0083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046995640
    174 https://doi.org/10.1007/s11661-003-0083-3
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11661-999-0226-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866354
    177 https://doi.org/10.1007/s11661-999-0226-2
    178 rdf:type schema:CreativeWork
    179 grid-institutes:None schema:alternateName Siemens Power Generation, D-45473, Mülheim a.d. Ruhr, Germany
    180 schema:name Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne EPFL, Switzerland
    181 Siemens Power Generation, D-45473, Mülheim a.d. Ruhr, Germany
    182 rdf:type schema:Organization
    183 grid-institutes:grid.5333.6 schema:alternateName Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-3960, Sierre, Switzerland
    184 schema:name Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-3960, Sierre, Switzerland
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...