Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05-24

AUTHORS

S. Mokadem, C. Bezençon, A. Hauert, A. Jacot, W. Kurz

ABSTRACT

The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an “oriented-to-misoriented transition” (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbines. More... »

PAGES

1500-1510

References to SciGraph publications

  • 2003-03. Last-stage solidification of alloys: Theoretical model of dendrite-arm and grain coalescence in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1993-10-01. Thermodynamic calculations made easy in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1994-04. A simple but realistic model for laser cladding in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1999-12. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1992. Phase Transformations in Metals and Alloys in NONE
  • 1989-06. Development of microstructures in Fe−15Ni−15Cr single crystal electron beam welds in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z

    DOI

    http://dx.doi.org/10.1007/s11661-007-9172-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008834549


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Siemens Power Generation, D-45473, M\u00fclheim a.d. Ruhr, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne EPFL, Switzerland", 
                "Siemens Power Generation, D-45473, M\u00fclheim a.d. Ruhr, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mokadem", 
            "givenName": "S.", 
            "id": "sg:person.011424037503.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424037503.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bezen\u00e7on", 
            "givenName": "C.", 
            "id": "sg:person.013246662335.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246662335.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hauert", 
            "givenName": "A.", 
            "id": "sg:person.015164520657.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164520657.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jacot", 
            "givenName": "A.", 
            "id": "sg:person.011330035306.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330035306.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-3960, Sierre, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "W.", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-003-0083-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046995640", 
              "https://doi.org/10.1007/s11661-003-0083-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02665211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020196097", 
              "https://doi.org/10.1007/bf02665211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02669134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031349439", 
              "https://doi.org/10.1007/bf02669134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0226-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030866354", 
              "https://doi.org/10.1007/s11661-999-0226-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02650147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052453538", 
              "https://doi.org/10.1007/bf02650147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3051-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705848", 
              "https://doi.org/10.1007/978-1-4899-3051-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-05-24", 
        "datePublishedReg": "2007-05-24", 
        "description": "The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an \u201coriented-to-misoriented transition\u201d (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbines.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-007-9172-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "keywords": [
          "superalloy single crystals", 
          "solidification conditions", 
          "columnar grains", 
          "nickel-base superalloy single crystals", 
          "gas turbine blades", 
          "aircraft gas turbines", 
          "heat flux direction", 
          "local solidification conditions", 
          "service life extension", 
          "specific solidification conditions", 
          "gas turbine", 
          "turbine blades", 
          "grain structure", 
          "processing window", 
          "columnar dendrites", 
          "microstructure modeling", 
          "numerical modeling", 
          "equiaxed growth", 
          "flux direction", 
          "new grains", 
          "expensive components", 
          "analytical model", 
          "life extension", 
          "crystal orientation", 
          "substrate orientation", 
          "laser repair", 
          "growth direction", 
          "nonzero angle", 
          "grains", 
          "single crystals", 
          "columnar", 
          "turbine", 
          "casting", 
          "microstructure", 
          "different orientations", 
          "modeling", 
          "blades", 
          "orientation", 
          "growth competition", 
          "conditions", 
          "direction", 
          "laser treatment", 
          "substrate", 
          "crystals", 
          "angle", 
          "growth axis", 
          "effect", 
          "structure", 
          "regime", 
          "transition", 
          "experiments", 
          "infiuence", 
          "window", 
          "model", 
          "components", 
          "account", 
          "formation", 
          "results", 
          "axis", 
          "dendrites", 
          "loss", 
          "extension", 
          "growth", 
          "repair", 
          "cases", 
          "competition", 
          "article", 
          "definition", 
          "treatment", 
          "single-crystal gas turbine blades", 
          "epitaxial columnar", 
          "Present day analytical models", 
          "day analytical models", 
          "local heat flux direction", 
          "preferred dendrite growth axis", 
          "dendrite growth axis", 
          "single-crystal processing window", 
          "Varying Substrate Orientations"
        ], 
        "name": "Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations", 
        "pagination": "1500-1510", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008834549"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-007-9172-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-007-9172-z", 
          "https://app.dimensions.ai/details/publication/pub.1008834549"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_441.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-007-9172-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-007-9172-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    192 TRIPLES      22 PREDICATES      108 URIs      94 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-007-9172-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N61ee08416f3b4327a0ce2f962e6b5b96
    4 schema:citation sg:pub.10.1007/978-1-4899-3051-4
    5 sg:pub.10.1007/bf02650147
    6 sg:pub.10.1007/bf02665211
    7 sg:pub.10.1007/bf02669134
    8 sg:pub.10.1007/s11661-003-0083-3
    9 sg:pub.10.1007/s11661-999-0226-2
    10 schema:datePublished 2007-05-24
    11 schema:datePublishedReg 2007-05-24
    12 schema:description The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an “oriented-to-misoriented transition” (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbines.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N28d604de500c4bb0ae94a8bbfbab41b9
    17 Nb2b681ead0564bc89d786bac3b4e5f1c
    18 sg:journal.1136292
    19 schema:keywords Present day analytical models
    20 Varying Substrate Orientations
    21 account
    22 aircraft gas turbines
    23 analytical model
    24 angle
    25 article
    26 axis
    27 blades
    28 cases
    29 casting
    30 columnar
    31 columnar dendrites
    32 columnar grains
    33 competition
    34 components
    35 conditions
    36 crystal orientation
    37 crystals
    38 day analytical models
    39 definition
    40 dendrite growth axis
    41 dendrites
    42 different orientations
    43 direction
    44 effect
    45 epitaxial columnar
    46 equiaxed growth
    47 expensive components
    48 experiments
    49 extension
    50 flux direction
    51 formation
    52 gas turbine
    53 gas turbine blades
    54 grain structure
    55 grains
    56 growth
    57 growth axis
    58 growth competition
    59 growth direction
    60 heat flux direction
    61 infiuence
    62 laser repair
    63 laser treatment
    64 life extension
    65 local heat flux direction
    66 local solidification conditions
    67 loss
    68 microstructure
    69 microstructure modeling
    70 model
    71 modeling
    72 new grains
    73 nickel-base superalloy single crystals
    74 nonzero angle
    75 numerical modeling
    76 orientation
    77 preferred dendrite growth axis
    78 processing window
    79 regime
    80 repair
    81 results
    82 service life extension
    83 single crystals
    84 single-crystal gas turbine blades
    85 single-crystal processing window
    86 solidification conditions
    87 specific solidification conditions
    88 structure
    89 substrate
    90 substrate orientation
    91 superalloy single crystals
    92 transition
    93 treatment
    94 turbine
    95 turbine blades
    96 window
    97 schema:name Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations
    98 schema:pagination 1500-1510
    99 schema:productId Nb7b286d334d44701b945bfd92d9d40fc
    100 Nd88757b1bd9044fb87cdb3ff7cdc5071
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008834549
    102 https://doi.org/10.1007/s11661-007-9172-z
    103 schema:sdDatePublished 2022-01-01T18:17
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N7ffff9152101402890d0819f9a7b4ae1
    106 schema:url https://doi.org/10.1007/s11661-007-9172-z
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N0561de8bcf0c4bbaae836c512de98d76 rdf:first sg:person.011330035306.12
    111 rdf:rest N54fa8271309e42e98b487539dba3cb2b
    112 N0a1ee81983fe45aeaa3e5a250f4017fe rdf:first sg:person.013246662335.04
    113 rdf:rest N97bb9ef209e94d639332a8d74e13ab68
    114 N28d604de500c4bb0ae94a8bbfbab41b9 schema:issueNumber 7
    115 rdf:type schema:PublicationIssue
    116 N54fa8271309e42e98b487539dba3cb2b rdf:first sg:person.010017145423.41
    117 rdf:rest rdf:nil
    118 N61ee08416f3b4327a0ce2f962e6b5b96 rdf:first sg:person.011424037503.55
    119 rdf:rest N0a1ee81983fe45aeaa3e5a250f4017fe
    120 N7ffff9152101402890d0819f9a7b4ae1 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N97bb9ef209e94d639332a8d74e13ab68 rdf:first sg:person.015164520657.65
    123 rdf:rest N0561de8bcf0c4bbaae836c512de98d76
    124 Nb2b681ead0564bc89d786bac3b4e5f1c schema:volumeNumber 38
    125 rdf:type schema:PublicationVolume
    126 Nb7b286d334d44701b945bfd92d9d40fc schema:name dimensions_id
    127 schema:value pub.1008834549
    128 rdf:type schema:PropertyValue
    129 Nd88757b1bd9044fb87cdb3ff7cdc5071 schema:name doi
    130 schema:value 10.1007/s11661-007-9172-z
    131 rdf:type schema:PropertyValue
    132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Engineering
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Materials Engineering
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1136292 schema:issn 1073-5623
    139 1543-1940
    140 schema:name Metallurgical and Materials Transactions A
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    144 schema:familyName Kurz
    145 schema:givenName W.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    147 rdf:type schema:Person
    148 sg:person.011330035306.12 schema:affiliation grid-institutes:grid.5333.6
    149 schema:familyName Jacot
    150 schema:givenName A.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330035306.12
    152 rdf:type schema:Person
    153 sg:person.011424037503.55 schema:affiliation grid-institutes:None
    154 schema:familyName Mokadem
    155 schema:givenName S.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424037503.55
    157 rdf:type schema:Person
    158 sg:person.013246662335.04 schema:affiliation grid-institutes:grid.5333.6
    159 schema:familyName Bezençon
    160 schema:givenName C.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246662335.04
    162 rdf:type schema:Person
    163 sg:person.015164520657.65 schema:affiliation grid-institutes:grid.5333.6
    164 schema:familyName Hauert
    165 schema:givenName A.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164520657.65
    167 rdf:type schema:Person
    168 sg:pub.10.1007/978-1-4899-3051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705848
    169 https://doi.org/10.1007/978-1-4899-3051-4
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf02650147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052453538
    172 https://doi.org/10.1007/bf02650147
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf02665211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196097
    175 https://doi.org/10.1007/bf02665211
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/bf02669134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349439
    178 https://doi.org/10.1007/bf02669134
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11661-003-0083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046995640
    181 https://doi.org/10.1007/s11661-003-0083-3
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11661-999-0226-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866354
    184 https://doi.org/10.1007/s11661-999-0226-2
    185 rdf:type schema:CreativeWork
    186 grid-institutes:None schema:alternateName Siemens Power Generation, D-45473, Mülheim a.d. Ruhr, Germany
    187 schema:name Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne EPFL, Switzerland
    188 Siemens Power Generation, D-45473, Mülheim a.d. Ruhr, Germany
    189 rdf:type schema:Organization
    190 grid-institutes:grid.5333.6 schema:alternateName Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-3960, Sierre, Switzerland
    191 schema:name Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-3960, Sierre, Switzerland
    192 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...