Ontology type: schema:ScholarlyArticle
2007-01-18
AUTHORSJ.C. LACOMBE, M.B. KOSS, M.E. GLICKSMAN
ABSTRACTThe growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) Péclet numbers predicted by Ivantsov’s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values. More... »
PAGES116-126
http://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0
DOIhttp://dx.doi.org/10.1007/s11661-006-9018-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020400052
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mechanical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA",
"id": "http://www.grid.ac/institutes/grid.266818.3",
"name": [
"Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA"
],
"type": "Organization"
},
"familyName": "LACOMBE",
"givenName": "J.C.",
"id": "sg:person.014003067732.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, College of the Holy Cross, Worcester, MA, USA",
"id": "http://www.grid.ac/institutes/grid.254514.3",
"name": [
"Department of Physics, College of the Holy Cross, Worcester, MA, USA"
],
"type": "Organization"
},
"familyName": "KOSS",
"givenName": "M.B.",
"id": "sg:person.013371002302.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA",
"id": "http://www.grid.ac/institutes/grid.15276.37",
"name": [
"Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA"
],
"type": "Organization"
},
"familyName": "GLICKSMAN",
"givenName": "M.E.",
"id": "sg:person.010720014261.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11661-999-0228-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039839983",
"https://doi.org/10.1007/s11661-999-0228-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02645198",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031518593",
"https://doi.org/10.1007/bf02645198"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-06162-6_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040336169",
"https://doi.org/10.1007/978-3-662-06162-6_20"
],
"type": "CreativeWork"
}
],
"datePublished": "2007-01-18",
"datePublishedReg": "2007-01-18",
"description": "The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) P\u00e9clet numbers predicted by Ivantsov\u2019s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values.",
"genre": "article",
"id": "sg:pub.10.1007/s11661-006-9018-0",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.8747082",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8746842",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"keywords": [
"dendritic growth theories",
"thermal diffusion",
"new surface area",
"convection effects",
"growth of dendrites",
"phase transformation",
"P\u00e9clet number",
"point source model",
"thermal source",
"tip velocity",
"radius of curvature",
"surface area",
"paraboloid shape",
"dendrite tip shape",
"tip shape",
"convection-free conditions",
"diffusion",
"reversible work",
"Ivantsov solution",
"source model",
"parameter data",
"proper accounting",
"irreversible diffusion",
"benchmark data",
"solution",
"shape",
"velocity",
"energy",
"stability",
"experiments",
"growth theory",
"paraboloid",
"sink",
"selection parameters",
"parameters",
"radius",
"dendrites",
"familiar process",
"process",
"range",
"rule value",
"curvature",
"conditions",
"work",
"components",
"theory",
"model",
"source",
"formation",
"transformation",
"data",
"environment",
"effect",
"main sets",
"hyperboloid",
"constants",
"values",
"area",
"pivalic acid",
"assumption",
"growth",
"set",
"number",
"revolution",
"interplay",
"article",
"acid",
"accounting",
"role",
"conclusion",
"quartics",
"supercooling range"
],
"name": "Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions",
"pagination": "116-126",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020400052"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11661-006-9018-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11661-006-9018-0",
"https://app.dimensions.ai/details/publication/pub.1020400052"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:56",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_452.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11661-006-9018-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'
This table displays all metadata directly associated to this object as RDF triples.
177 TRIPLES
21 PREDICATES
101 URIs
87 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11661-006-9018-0 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | ″ | anzsrc-for:0913 |
6 | ″ | schema:author | Ndb49100aadad4ec1af562f2ddf4328c5 |
7 | ″ | schema:citation | sg:pub.10.1007/978-3-662-06162-6_20 |
8 | ″ | ″ | sg:pub.10.1007/bf02645198 |
9 | ″ | ″ | sg:pub.10.1007/s11661-999-0228-0 |
10 | ″ | schema:datePublished | 2007-01-18 |
11 | ″ | schema:datePublishedReg | 2007-01-18 |
12 | ″ | schema:description | The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) Péclet numbers predicted by Ivantsov’s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values. |
13 | ″ | schema:genre | article |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | Na98a718bbc8844f08ce7aa53ecb81304 |
16 | ″ | ″ | Nf43a0ebda55c4590bd56297df752bdb1 |
17 | ″ | ″ | sg:journal.1136292 |
18 | ″ | schema:keywords | Ivantsov solution |
19 | ″ | ″ | Péclet number |
20 | ″ | ″ | accounting |
21 | ″ | ″ | acid |
22 | ″ | ″ | area |
23 | ″ | ″ | article |
24 | ″ | ″ | assumption |
25 | ″ | ″ | benchmark data |
26 | ″ | ″ | components |
27 | ″ | ″ | conclusion |
28 | ″ | ″ | conditions |
29 | ″ | ″ | constants |
30 | ″ | ″ | convection effects |
31 | ″ | ″ | convection-free conditions |
32 | ″ | ″ | curvature |
33 | ″ | ″ | data |
34 | ″ | ″ | dendrite tip shape |
35 | ″ | ″ | dendrites |
36 | ″ | ″ | dendritic growth theories |
37 | ″ | ″ | diffusion |
38 | ″ | ″ | effect |
39 | ″ | ″ | energy |
40 | ″ | ″ | environment |
41 | ″ | ″ | experiments |
42 | ″ | ″ | familiar process |
43 | ″ | ″ | formation |
44 | ″ | ″ | growth |
45 | ″ | ″ | growth of dendrites |
46 | ″ | ″ | growth theory |
47 | ″ | ″ | hyperboloid |
48 | ″ | ″ | interplay |
49 | ″ | ″ | irreversible diffusion |
50 | ″ | ″ | main sets |
51 | ″ | ″ | model |
52 | ″ | ″ | new surface area |
53 | ″ | ″ | number |
54 | ″ | ″ | paraboloid |
55 | ″ | ″ | paraboloid shape |
56 | ″ | ″ | parameter data |
57 | ″ | ″ | parameters |
58 | ″ | ″ | phase transformation |
59 | ″ | ″ | pivalic acid |
60 | ″ | ″ | point source model |
61 | ″ | ″ | process |
62 | ″ | ″ | proper accounting |
63 | ″ | ″ | quartics |
64 | ″ | ″ | radius |
65 | ″ | ″ | radius of curvature |
66 | ″ | ″ | range |
67 | ″ | ″ | reversible work |
68 | ″ | ″ | revolution |
69 | ″ | ″ | role |
70 | ″ | ″ | rule value |
71 | ″ | ″ | selection parameters |
72 | ″ | ″ | set |
73 | ″ | ″ | shape |
74 | ″ | ″ | sink |
75 | ″ | ″ | solution |
76 | ″ | ″ | source |
77 | ″ | ″ | source model |
78 | ″ | ″ | stability |
79 | ″ | ″ | supercooling range |
80 | ″ | ″ | surface area |
81 | ″ | ″ | theory |
82 | ″ | ″ | thermal diffusion |
83 | ″ | ″ | thermal source |
84 | ″ | ″ | tip shape |
85 | ″ | ″ | tip velocity |
86 | ″ | ″ | transformation |
87 | ″ | ″ | values |
88 | ″ | ″ | velocity |
89 | ″ | ″ | work |
90 | ″ | schema:name | Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions |
91 | ″ | schema:pagination | 116-126 |
92 | ″ | schema:productId | N10c8d8214236466cbde1e973aeb4c8b6 |
93 | ″ | ″ | Nc3e9d612e90543199c24bc3b365c55f1 |
94 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020400052 |
95 | ″ | ″ | https://doi.org/10.1007/s11661-006-9018-0 |
96 | ″ | schema:sdDatePublished | 2022-08-04T16:56 |
97 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
98 | ″ | schema:sdPublisher | Nb1b8c14c0b3b410bb0ffced8ea4db65b |
99 | ″ | schema:url | https://doi.org/10.1007/s11661-006-9018-0 |
100 | ″ | sgo:license | sg:explorer/license/ |
101 | ″ | sgo:sdDataset | articles |
102 | ″ | rdf:type | schema:ScholarlyArticle |
103 | N10c8d8214236466cbde1e973aeb4c8b6 | schema:name | doi |
104 | ″ | schema:value | 10.1007/s11661-006-9018-0 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | N737fab58f59e4190b029e6ef6f71d1a8 | rdf:first | sg:person.010720014261.43 |
107 | ″ | rdf:rest | rdf:nil |
108 | N8652b826ea67417c8c5c47db458aea65 | rdf:first | sg:person.013371002302.98 |
109 | ″ | rdf:rest | N737fab58f59e4190b029e6ef6f71d1a8 |
110 | Na98a718bbc8844f08ce7aa53ecb81304 | schema:volumeNumber | 38 |
111 | ″ | rdf:type | schema:PublicationVolume |
112 | Nb1b8c14c0b3b410bb0ffced8ea4db65b | schema:name | Springer Nature - SN SciGraph project |
113 | ″ | rdf:type | schema:Organization |
114 | Nc3e9d612e90543199c24bc3b365c55f1 | schema:name | dimensions_id |
115 | ″ | schema:value | pub.1020400052 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | Ndb49100aadad4ec1af562f2ddf4328c5 | rdf:first | sg:person.014003067732.41 |
118 | ″ | rdf:rest | N8652b826ea67417c8c5c47db458aea65 |
119 | Nf43a0ebda55c4590bd56297df752bdb1 | schema:issueNumber | 1 |
120 | ″ | rdf:type | schema:PublicationIssue |
121 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Chemical Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Physical Chemistry (incl. Structural) |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Engineering |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Materials Engineering |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:0913 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Mechanical Engineering |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | sg:grant.8746842 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11661-006-9018-0 |
137 | ″ | rdf:type | schema:MonetaryGrant |
138 | sg:grant.8747082 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11661-006-9018-0 |
139 | ″ | rdf:type | schema:MonetaryGrant |
140 | sg:journal.1136292 | schema:issn | 1073-5623 |
141 | ″ | ″ | 1543-1940 |
142 | ″ | schema:name | Metallurgical and Materials Transactions A |
143 | ″ | schema:publisher | Springer Nature |
144 | ″ | rdf:type | schema:Periodical |
145 | sg:person.010720014261.43 | schema:affiliation | grid-institutes:grid.15276.37 |
146 | ″ | schema:familyName | GLICKSMAN |
147 | ″ | schema:givenName | M.E. |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43 |
149 | ″ | rdf:type | schema:Person |
150 | sg:person.013371002302.98 | schema:affiliation | grid-institutes:grid.254514.3 |
151 | ″ | schema:familyName | KOSS |
152 | ″ | schema:givenName | M.B. |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98 |
154 | ″ | rdf:type | schema:Person |
155 | sg:person.014003067732.41 | schema:affiliation | grid-institutes:grid.266818.3 |
156 | ″ | schema:familyName | LACOMBE |
157 | ″ | schema:givenName | J.C. |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41 |
159 | ″ | rdf:type | schema:Person |
160 | sg:pub.10.1007/978-3-662-06162-6_20 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040336169 |
161 | ″ | ″ | https://doi.org/10.1007/978-3-662-06162-6_20 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1007/bf02645198 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031518593 |
164 | ″ | ″ | https://doi.org/10.1007/bf02645198 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1007/s11661-999-0228-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039839983 |
167 | ″ | ″ | https://doi.org/10.1007/s11661-999-0228-0 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | grid-institutes:grid.15276.37 | schema:alternateName | Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA |
170 | ″ | schema:name | Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA |
171 | ″ | rdf:type | schema:Organization |
172 | grid-institutes:grid.254514.3 | schema:alternateName | Department of Physics, College of the Holy Cross, Worcester, MA, USA |
173 | ″ | schema:name | Department of Physics, College of the Holy Cross, Worcester, MA, USA |
174 | ″ | rdf:type | schema:Organization |
175 | grid-institutes:grid.266818.3 | schema:alternateName | Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA |
176 | ″ | schema:name | Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA |
177 | ″ | rdf:type | schema:Organization |