Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01-18

AUTHORS

J.C. LACOMBE, M.B. KOSS, M.E. GLICKSMAN

ABSTRACT

The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) Péclet numbers predicted by Ivantsov’s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values. More... »

PAGES

116-126

References to SciGraph publications

  • 2001. Dendritic Growth in BRANCHING IN NATURE
  • 1988-08. Isothermal dendritic growth— a proposed microgravity experiment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1999-12. Dendritic Growth tip velocities and radii of curvature in microgravity in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0

    DOI

    http://dx.doi.org/10.1007/s11661-006-9018-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020400052


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA", 
              "id": "http://www.grid.ac/institutes/grid.266818.3", 
              "name": [
                "Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LACOMBE", 
            "givenName": "J.C.", 
            "id": "sg:person.014003067732.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, College of the Holy Cross, Worcester, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.254514.3", 
              "name": [
                "Department of Physics, College of the Holy Cross, Worcester, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "KOSS", 
            "givenName": "M.B.", 
            "id": "sg:person.013371002302.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.15276.37", 
              "name": [
                "Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "GLICKSMAN", 
            "givenName": "M.E.", 
            "id": "sg:person.010720014261.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-999-0228-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039839983", 
              "https://doi.org/10.1007/s11661-999-0228-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031518593", 
              "https://doi.org/10.1007/bf02645198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-06162-6_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040336169", 
              "https://doi.org/10.1007/978-3-662-06162-6_20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-01-18", 
        "datePublishedReg": "2007-01-18", 
        "description": "The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) P\u00e9clet numbers predicted by Ivantsov\u2019s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-006-9018-0", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8747082", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8746842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "keywords": [
          "dendritic growth theories", 
          "thermal diffusion", 
          "new surface area", 
          "convection effects", 
          "growth of dendrites", 
          "phase transformation", 
          "P\u00e9clet number", 
          "point source model", 
          "thermal source", 
          "tip velocity", 
          "radius of curvature", 
          "surface area", 
          "paraboloid shape", 
          "dendrite tip shape", 
          "tip shape", 
          "convection-free conditions", 
          "diffusion", 
          "reversible work", 
          "Ivantsov solution", 
          "source model", 
          "parameter data", 
          "proper accounting", 
          "irreversible diffusion", 
          "benchmark data", 
          "solution", 
          "shape", 
          "velocity", 
          "energy", 
          "stability", 
          "experiments", 
          "growth theory", 
          "paraboloid", 
          "sink", 
          "selection parameters", 
          "parameters", 
          "radius", 
          "dendrites", 
          "familiar process", 
          "process", 
          "range", 
          "rule value", 
          "curvature", 
          "conditions", 
          "work", 
          "components", 
          "theory", 
          "model", 
          "source", 
          "formation", 
          "transformation", 
          "data", 
          "environment", 
          "effect", 
          "main sets", 
          "hyperboloid", 
          "constants", 
          "values", 
          "area", 
          "pivalic acid", 
          "assumption", 
          "growth", 
          "set", 
          "number", 
          "revolution", 
          "interplay", 
          "article", 
          "acid", 
          "accounting", 
          "role", 
          "conclusion", 
          "quartics", 
          "supercooling range"
        ], 
        "name": "Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions", 
        "pagination": "116-126", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020400052"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-006-9018-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-006-9018-0", 
          "https://app.dimensions.ai/details/publication/pub.1020400052"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_452.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-006-9018-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      21 PREDICATES      101 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-006-9018-0 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 anzsrc-for:0913
    6 schema:author Ndb49100aadad4ec1af562f2ddf4328c5
    7 schema:citation sg:pub.10.1007/978-3-662-06162-6_20
    8 sg:pub.10.1007/bf02645198
    9 sg:pub.10.1007/s11661-999-0228-0
    10 schema:datePublished 2007-01-18
    11 schema:datePublishedReg 2007-01-18
    12 schema:description The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) Péclet numbers predicted by Ivantsov’s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values.
    13 schema:genre article
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Na98a718bbc8844f08ce7aa53ecb81304
    16 Nf43a0ebda55c4590bd56297df752bdb1
    17 sg:journal.1136292
    18 schema:keywords Ivantsov solution
    19 Péclet number
    20 accounting
    21 acid
    22 area
    23 article
    24 assumption
    25 benchmark data
    26 components
    27 conclusion
    28 conditions
    29 constants
    30 convection effects
    31 convection-free conditions
    32 curvature
    33 data
    34 dendrite tip shape
    35 dendrites
    36 dendritic growth theories
    37 diffusion
    38 effect
    39 energy
    40 environment
    41 experiments
    42 familiar process
    43 formation
    44 growth
    45 growth of dendrites
    46 growth theory
    47 hyperboloid
    48 interplay
    49 irreversible diffusion
    50 main sets
    51 model
    52 new surface area
    53 number
    54 paraboloid
    55 paraboloid shape
    56 parameter data
    57 parameters
    58 phase transformation
    59 pivalic acid
    60 point source model
    61 process
    62 proper accounting
    63 quartics
    64 radius
    65 radius of curvature
    66 range
    67 reversible work
    68 revolution
    69 role
    70 rule value
    71 selection parameters
    72 set
    73 shape
    74 sink
    75 solution
    76 source
    77 source model
    78 stability
    79 supercooling range
    80 surface area
    81 theory
    82 thermal diffusion
    83 thermal source
    84 tip shape
    85 tip velocity
    86 transformation
    87 values
    88 velocity
    89 work
    90 schema:name Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions
    91 schema:pagination 116-126
    92 schema:productId N10c8d8214236466cbde1e973aeb4c8b6
    93 Nc3e9d612e90543199c24bc3b365c55f1
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020400052
    95 https://doi.org/10.1007/s11661-006-9018-0
    96 schema:sdDatePublished 2022-08-04T16:56
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher Nb1b8c14c0b3b410bb0ffced8ea4db65b
    99 schema:url https://doi.org/10.1007/s11661-006-9018-0
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N10c8d8214236466cbde1e973aeb4c8b6 schema:name doi
    104 schema:value 10.1007/s11661-006-9018-0
    105 rdf:type schema:PropertyValue
    106 N737fab58f59e4190b029e6ef6f71d1a8 rdf:first sg:person.010720014261.43
    107 rdf:rest rdf:nil
    108 N8652b826ea67417c8c5c47db458aea65 rdf:first sg:person.013371002302.98
    109 rdf:rest N737fab58f59e4190b029e6ef6f71d1a8
    110 Na98a718bbc8844f08ce7aa53ecb81304 schema:volumeNumber 38
    111 rdf:type schema:PublicationVolume
    112 Nb1b8c14c0b3b410bb0ffced8ea4db65b schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 Nc3e9d612e90543199c24bc3b365c55f1 schema:name dimensions_id
    115 schema:value pub.1020400052
    116 rdf:type schema:PropertyValue
    117 Ndb49100aadad4ec1af562f2ddf4328c5 rdf:first sg:person.014003067732.41
    118 rdf:rest N8652b826ea67417c8c5c47db458aea65
    119 Nf43a0ebda55c4590bd56297df752bdb1 schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Chemical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Physical Chemistry (incl. Structural)
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Engineering
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Materials Engineering
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Mechanical Engineering
    135 rdf:type schema:DefinedTerm
    136 sg:grant.8746842 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-006-9018-0
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.8747082 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-006-9018-0
    139 rdf:type schema:MonetaryGrant
    140 sg:journal.1136292 schema:issn 1073-5623
    141 1543-1940
    142 schema:name Metallurgical and Materials Transactions A
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.15276.37
    146 schema:familyName GLICKSMAN
    147 schema:givenName M.E.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
    149 rdf:type schema:Person
    150 sg:person.013371002302.98 schema:affiliation grid-institutes:grid.254514.3
    151 schema:familyName KOSS
    152 schema:givenName M.B.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98
    154 rdf:type schema:Person
    155 sg:person.014003067732.41 schema:affiliation grid-institutes:grid.266818.3
    156 schema:familyName LACOMBE
    157 schema:givenName J.C.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41
    159 rdf:type schema:Person
    160 sg:pub.10.1007/978-3-662-06162-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040336169
    161 https://doi.org/10.1007/978-3-662-06162-6_20
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf02645198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031518593
    164 https://doi.org/10.1007/bf02645198
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s11661-999-0228-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039839983
    167 https://doi.org/10.1007/s11661-999-0228-0
    168 rdf:type schema:CreativeWork
    169 grid-institutes:grid.15276.37 schema:alternateName Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA
    170 schema:name Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA
    171 rdf:type schema:Organization
    172 grid-institutes:grid.254514.3 schema:alternateName Department of Physics, College of the Holy Cross, Worcester, MA, USA
    173 schema:name Department of Physics, College of the Holy Cross, Worcester, MA, USA
    174 rdf:type schema:Organization
    175 grid-institutes:grid.266818.3 schema:alternateName Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA
    176 schema:name Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...