Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01-18

AUTHORS

J.C. LACOMBE, M.B. KOSS, M.E. GLICKSMAN

ABSTRACT

The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) Péclet numbers predicted by Ivantsov’s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values. More... »

PAGES

116-126

References to SciGraph publications

  • 2001. Dendritic Growth in BRANCHING IN NATURE
  • 1988-08. Isothermal dendritic growth— a proposed microgravity experiment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1999-12. Dendritic Growth tip velocities and radii of curvature in microgravity in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0

    DOI

    http://dx.doi.org/10.1007/s11661-006-9018-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020400052


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA", 
              "id": "http://www.grid.ac/institutes/grid.266818.3", 
              "name": [
                "Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LACOMBE", 
            "givenName": "J.C.", 
            "id": "sg:person.014003067732.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, College of the Holy Cross, Worcester, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.254514.3", 
              "name": [
                "Department of Physics, College of the Holy Cross, Worcester, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "KOSS", 
            "givenName": "M.B.", 
            "id": "sg:person.013371002302.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.15276.37", 
              "name": [
                "Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "GLICKSMAN", 
            "givenName": "M.E.", 
            "id": "sg:person.010720014261.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02645198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031518593", 
              "https://doi.org/10.1007/bf02645198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0228-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039839983", 
              "https://doi.org/10.1007/s11661-999-0228-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-06162-6_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040336169", 
              "https://doi.org/10.1007/978-3-662-06162-6_20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-01-18", 
        "datePublishedReg": "2007-01-18", 
        "description": "The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) P\u00e9clet numbers predicted by Ivantsov\u2019s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-006-9018-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8747082", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8746842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "keywords": [
          "dendritic growth theories", 
          "thermal diffusion", 
          "new surface area", 
          "convection effects", 
          "phase transformation", 
          "P\u00e9clet number", 
          "point source model", 
          "thermal source", 
          "tip velocity", 
          "radius of curvature", 
          "growth of dendrites", 
          "surface area", 
          "paraboloid shape", 
          "dendrite tip shape", 
          "tip shape", 
          "convection-free conditions", 
          "diffusion", 
          "reversible work", 
          "Ivantsov solution", 
          "source model", 
          "parameter data", 
          "proper accounting", 
          "benchmark data", 
          "solution", 
          "shape", 
          "velocity", 
          "irreversible diffusion", 
          "energy", 
          "stability", 
          "experiments", 
          "growth theory", 
          "paraboloid", 
          "sink", 
          "selection parameters", 
          "parameters", 
          "radius", 
          "dendrites", 
          "familiar process", 
          "process", 
          "range", 
          "rule value", 
          "curvature", 
          "conditions", 
          "work", 
          "components", 
          "theory", 
          "main sets", 
          "model", 
          "source", 
          "formation", 
          "transformation", 
          "data", 
          "pivalic acid", 
          "environment", 
          "effect", 
          "hyperboloid", 
          "constants", 
          "values", 
          "area", 
          "assumption", 
          "growth", 
          "set", 
          "number", 
          "revolution", 
          "interplay", 
          "article", 
          "acid", 
          "accounting", 
          "conclusion", 
          "role", 
          "quartics", 
          "supercooling range"
        ], 
        "name": "Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions", 
        "pagination": "116-126", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020400052"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-006-9018-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-006-9018-0", 
          "https://app.dimensions.ai/details/publication/pub.1020400052"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_434.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-006-9018-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-9018-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      22 PREDICATES      102 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-006-9018-0 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 anzsrc-for:0913
    6 schema:author N6841d4301b7348d3b65173dc17613935
    7 schema:citation sg:pub.10.1007/978-3-662-06162-6_20
    8 sg:pub.10.1007/bf02645198
    9 sg:pub.10.1007/s11661-999-0228-0
    10 schema:datePublished 2007-01-18
    11 schema:datePublishedReg 2007-01-18
    12 schema:description The growth of dendrites is governed by the interplay between two simple and familiar processes: the irreversible diffusion of energy and the reversible work done in the formation of new surface area via phase transformation. In this article, we present benchmark data using pivalic acid (PVA) in an apparent-microgravity environment, where convection effects were essentially eliminated so that we could test independently both components of dendritic growth theory, thermal diffusion, and interface stability. Our data indicate three main sets of conclusions. (1) Pivalic dendrites are not well described by assuming a single-parameter paraboloid or a two-parameter quartic of revolution, but rather by a two-parameter hyperboloid. (2) Péclet numbers predicted by Ivantsov’s solution do not agree with the convection-free data, as may be expected given the assumption of a paraboloid shape, but do agree reasonably well with point source models based on a hyperboloidal dendrite tip shape. This validates the role of thermal diffusion in dendritic growth theory provided that one makes a proper accounting of thermal sources and sinks. Last, we conclude that (3) the scaling/selection parameter data from both convection-free and diffusoconvective experiments are indistinguishable from each other, and the experimentally determined scaling/selection parameter does not appear to be a constant over the full supercooling range of these experiments and does not appear to agree with current predicted scaling/selection rule values.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N5133c4a0d3e54b1da40fea58644982c1
    17 Nc1790b26d5634c79b016407ba4d081fa
    18 sg:journal.1136292
    19 schema:keywords Ivantsov solution
    20 Péclet number
    21 accounting
    22 acid
    23 area
    24 article
    25 assumption
    26 benchmark data
    27 components
    28 conclusion
    29 conditions
    30 constants
    31 convection effects
    32 convection-free conditions
    33 curvature
    34 data
    35 dendrite tip shape
    36 dendrites
    37 dendritic growth theories
    38 diffusion
    39 effect
    40 energy
    41 environment
    42 experiments
    43 familiar process
    44 formation
    45 growth
    46 growth of dendrites
    47 growth theory
    48 hyperboloid
    49 interplay
    50 irreversible diffusion
    51 main sets
    52 model
    53 new surface area
    54 number
    55 paraboloid
    56 paraboloid shape
    57 parameter data
    58 parameters
    59 phase transformation
    60 pivalic acid
    61 point source model
    62 process
    63 proper accounting
    64 quartics
    65 radius
    66 radius of curvature
    67 range
    68 reversible work
    69 revolution
    70 role
    71 rule value
    72 selection parameters
    73 set
    74 shape
    75 sink
    76 solution
    77 source
    78 source model
    79 stability
    80 supercooling range
    81 surface area
    82 theory
    83 thermal diffusion
    84 thermal source
    85 tip shape
    86 tip velocity
    87 transformation
    88 values
    89 velocity
    90 work
    91 schema:name Tip Velocities and Radii of Curvature of Pivalic Acid Dendrites under Convection-Free Conditions
    92 schema:pagination 116-126
    93 schema:productId N4de1923fe74d4935b129dc7c6fc8be25
    94 N95d8e2c1bcf445deb3ec1fc29a580922
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020400052
    96 https://doi.org/10.1007/s11661-006-9018-0
    97 schema:sdDatePublished 2022-06-01T22:07
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N587be8437b104b6990b7e86720e002de
    100 schema:url https://doi.org/10.1007/s11661-006-9018-0
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N4de1923fe74d4935b129dc7c6fc8be25 schema:name dimensions_id
    105 schema:value pub.1020400052
    106 rdf:type schema:PropertyValue
    107 N5133c4a0d3e54b1da40fea58644982c1 schema:volumeNumber 38
    108 rdf:type schema:PublicationVolume
    109 N587be8437b104b6990b7e86720e002de schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N6841d4301b7348d3b65173dc17613935 rdf:first sg:person.014003067732.41
    112 rdf:rest Nb52fc429a39c4fd79656ad9fe5991d19
    113 N95d8e2c1bcf445deb3ec1fc29a580922 schema:name doi
    114 schema:value 10.1007/s11661-006-9018-0
    115 rdf:type schema:PropertyValue
    116 Na6559ce70d09423bbd3de104b3e2cc4f rdf:first sg:person.010720014261.43
    117 rdf:rest rdf:nil
    118 Nb52fc429a39c4fd79656ad9fe5991d19 rdf:first sg:person.013371002302.98
    119 rdf:rest Na6559ce70d09423bbd3de104b3e2cc4f
    120 Nc1790b26d5634c79b016407ba4d081fa schema:issueNumber 1
    121 rdf:type schema:PublicationIssue
    122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Chemical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Physical Chemistry (incl. Structural)
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Materials Engineering
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Mechanical Engineering
    136 rdf:type schema:DefinedTerm
    137 sg:grant.8746842 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-006-9018-0
    138 rdf:type schema:MonetaryGrant
    139 sg:grant.8747082 http://pending.schema.org/fundedItem sg:pub.10.1007/s11661-006-9018-0
    140 rdf:type schema:MonetaryGrant
    141 sg:journal.1136292 schema:issn 1073-5623
    142 1543-1940
    143 schema:name Metallurgical and Materials Transactions A
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.15276.37
    147 schema:familyName GLICKSMAN
    148 schema:givenName M.E.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
    150 rdf:type schema:Person
    151 sg:person.013371002302.98 schema:affiliation grid-institutes:grid.254514.3
    152 schema:familyName KOSS
    153 schema:givenName M.B.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98
    155 rdf:type schema:Person
    156 sg:person.014003067732.41 schema:affiliation grid-institutes:grid.266818.3
    157 schema:familyName LACOMBE
    158 schema:givenName J.C.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41
    160 rdf:type schema:Person
    161 sg:pub.10.1007/978-3-662-06162-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040336169
    162 https://doi.org/10.1007/978-3-662-06162-6_20
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf02645198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031518593
    165 https://doi.org/10.1007/bf02645198
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11661-999-0228-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039839983
    168 https://doi.org/10.1007/s11661-999-0228-0
    169 rdf:type schema:CreativeWork
    170 grid-institutes:grid.15276.37 schema:alternateName Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA
    171 schema:name Materials Science and Engineering Department, University of Florida, Gainesville, FL, USA
    172 rdf:type schema:Organization
    173 grid-institutes:grid.254514.3 schema:alternateName Department of Physics, College of the Holy Cross, Worcester, MA, USA
    174 schema:name Department of Physics, College of the Holy Cross, Worcester, MA, USA
    175 rdf:type schema:Organization
    176 grid-institutes:grid.266818.3 schema:alternateName Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA
    177 schema:name Department of Chemical and Metallurgical Engineering, University of Nevada, 89436, Reno, NV, USA
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...