The influence of a martensitic phase transformation on stress development in thermal barrier coating systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08

AUTHORS

M. L. Glynn, M. W. Chen, K. T. Ramesh, K. J. Hemker

ABSTRACT

Thermal barrier coatings (TBCs) provide thermal insulation and oxidation protection of Ni-base superalloys in elevated temperature turbine applications. Thermal barrier coating failure is caused by spallation, which is related to the development of internal stresses during thermal cycling. Recent microstructural observations have highlighted the occurrence of a martensitic bond coat transformation, and this finite-element analysis was conducted to clarify the influence of the martensite on the development of stresses and strains in the multilayered system during thermal cycling. Simulations incorporating the volume change associated with the transformation and experimentally measured coating properties indicate that out-of-plane top coat stresses are greatly influenced by the presence of the martensitic transformation, the temperature at which it occurs relative to the strength of the bond coat and attendant bond coat plasticity. Intermediate values of bond coat strength and transformation temperatures are shown to result in the highest top coat stresses. More... »

PAGES

2279-2286

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-006-0207-7

DOI

http://dx.doi.org/10.1007/s11661-006-0207-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005418430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glynn", 
        "givenName": "M. L.", 
        "id": "sg:person.015733526003.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733526003.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "M. W.", 
        "id": "sg:person.015125211260.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramesh", 
        "givenName": "K. T.", 
        "id": "sg:person.011072243265.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072243265.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemker", 
        "givenName": "K. J.", 
        "id": "sg:person.01225411302.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225411302.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-999-0332-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009020020", 
          "https://doi.org/10.1007/s11661-999-0332-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-003-0293-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053473214", 
          "https://doi.org/10.1007/s11661-003-0293-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08", 
    "datePublishedReg": "2004-08-01", 
    "description": "Thermal barrier coatings (TBCs) provide thermal insulation and oxidation protection of Ni-base superalloys in elevated temperature turbine applications. Thermal barrier coating failure is caused by spallation, which is related to the development of internal stresses during thermal cycling. Recent microstructural observations have highlighted the occurrence of a martensitic bond coat transformation, and this finite-element analysis was conducted to clarify the influence of the martensite on the development of stresses and strains in the multilayered system during thermal cycling. Simulations incorporating the volume change associated with the transformation and experimentally measured coating properties indicate that out-of-plane top coat stresses are greatly influenced by the presence of the martensitic transformation, the temperature at which it occurs relative to the strength of the bond coat and attendant bond coat plasticity. Intermediate values of bond coat strength and transformation temperatures are shown to result in the highest top coat stresses.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-006-0207-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "thermal barrier coatings", 
      "thermal cycling", 
      "thermal barrier coating failure", 
      "thermal barrier coating system", 
      "barrier coating system", 
      "finite element analysis", 
      "Ni-base superalloys", 
      "martensitic phase transformation", 
      "turbine applications", 
      "coating failure", 
      "barrier coatings", 
      "bond coat", 
      "coating system", 
      "oxidation protection", 
      "thermal insulation", 
      "coating properties", 
      "microstructural observations", 
      "internal stress", 
      "development of stress", 
      "stress development", 
      "martensitic transformation", 
      "transformation temperature", 
      "phase transformation", 
      "multilayered system", 
      "volume change", 
      "temperature", 
      "strength", 
      "superalloy", 
      "martensite", 
      "insulation", 
      "coatings", 
      "spallation", 
      "stress", 
      "simulations", 
      "cycling", 
      "influence", 
      "system", 
      "properties", 
      "applications", 
      "intermediate values", 
      "transformation", 
      "development", 
      "coat", 
      "failure", 
      "values", 
      "plasticity", 
      "analysis", 
      "observations", 
      "protection", 
      "presence", 
      "changes", 
      "occurrence"
    ], 
    "name": "The influence of a martensitic phase transformation on stress development in thermal barrier coating systems", 
    "pagination": "2279-2286", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005418430"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-006-0207-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-006-0207-7", 
      "https://app.dimensions.ai/details/publication/pub.1005418430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_386.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-006-0207-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-0207-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-0207-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-0207-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-006-0207-7'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      79 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-006-0207-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nca3de8a58cda43ca9e6804d20541febf
4 schema:citation sg:pub.10.1007/s11661-003-0293-8
5 sg:pub.10.1007/s11661-999-0332-1
6 schema:datePublished 2004-08
7 schema:datePublishedReg 2004-08-01
8 schema:description Thermal barrier coatings (TBCs) provide thermal insulation and oxidation protection of Ni-base superalloys in elevated temperature turbine applications. Thermal barrier coating failure is caused by spallation, which is related to the development of internal stresses during thermal cycling. Recent microstructural observations have highlighted the occurrence of a martensitic bond coat transformation, and this finite-element analysis was conducted to clarify the influence of the martensite on the development of stresses and strains in the multilayered system during thermal cycling. Simulations incorporating the volume change associated with the transformation and experimentally measured coating properties indicate that out-of-plane top coat stresses are greatly influenced by the presence of the martensitic transformation, the temperature at which it occurs relative to the strength of the bond coat and attendant bond coat plasticity. Intermediate values of bond coat strength and transformation temperatures are shown to result in the highest top coat stresses.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N609430a9aa9044a08abc71ffeb1732f3
12 Nc35075c35416481b95cdad659cbf9e7b
13 sg:journal.1136292
14 schema:keywords Ni-base superalloys
15 analysis
16 applications
17 barrier coating system
18 barrier coatings
19 bond coat
20 changes
21 coat
22 coating failure
23 coating properties
24 coating system
25 coatings
26 cycling
27 development
28 development of stress
29 failure
30 finite element analysis
31 influence
32 insulation
33 intermediate values
34 internal stress
35 martensite
36 martensitic phase transformation
37 martensitic transformation
38 microstructural observations
39 multilayered system
40 observations
41 occurrence
42 oxidation protection
43 phase transformation
44 plasticity
45 presence
46 properties
47 protection
48 simulations
49 spallation
50 strength
51 stress
52 stress development
53 superalloy
54 system
55 temperature
56 thermal barrier coating failure
57 thermal barrier coating system
58 thermal barrier coatings
59 thermal cycling
60 thermal insulation
61 transformation
62 transformation temperature
63 turbine applications
64 values
65 volume change
66 schema:name The influence of a martensitic phase transformation on stress development in thermal barrier coating systems
67 schema:pagination 2279-2286
68 schema:productId N9dcd2735888d49de8e90be030337d5b5
69 Na39487d7283d4fefb4677020c96a5a0e
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005418430
71 https://doi.org/10.1007/s11661-006-0207-7
72 schema:sdDatePublished 2022-11-24T20:51
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N3a7ccf2c6f434437b4b7c7e9f26f1671
75 schema:url https://doi.org/10.1007/s11661-006-0207-7
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N01f7f602a8be4440995f6d0014604ec9 rdf:first sg:person.011072243265.25
80 rdf:rest Nce8474263b8d460d9a7a2f6e3b9e811b
81 N3a7ccf2c6f434437b4b7c7e9f26f1671 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N609430a9aa9044a08abc71ffeb1732f3 schema:volumeNumber 35
84 rdf:type schema:PublicationVolume
85 N9dcd2735888d49de8e90be030337d5b5 schema:name doi
86 schema:value 10.1007/s11661-006-0207-7
87 rdf:type schema:PropertyValue
88 Na39487d7283d4fefb4677020c96a5a0e schema:name dimensions_id
89 schema:value pub.1005418430
90 rdf:type schema:PropertyValue
91 Nbeced1f2e24b4a528b00b37b5c4d592a rdf:first sg:person.015125211260.19
92 rdf:rest N01f7f602a8be4440995f6d0014604ec9
93 Nc35075c35416481b95cdad659cbf9e7b schema:issueNumber 8
94 rdf:type schema:PublicationIssue
95 Nca3de8a58cda43ca9e6804d20541febf rdf:first sg:person.015733526003.98
96 rdf:rest Nbeced1f2e24b4a528b00b37b5c4d592a
97 Nce8474263b8d460d9a7a2f6e3b9e811b rdf:first sg:person.01225411302.11
98 rdf:rest rdf:nil
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
103 schema:name Materials Engineering
104 rdf:type schema:DefinedTerm
105 sg:journal.1136292 schema:issn 1073-5623
106 1543-1940
107 schema:name Metallurgical and Materials Transactions A
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.011072243265.25 schema:affiliation grid-institutes:grid.21107.35
111 schema:familyName Ramesh
112 schema:givenName K. T.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072243265.25
114 rdf:type schema:Person
115 sg:person.01225411302.11 schema:affiliation grid-institutes:grid.21107.35
116 schema:familyName Hemker
117 schema:givenName K. J.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225411302.11
119 rdf:type schema:Person
120 sg:person.015125211260.19 schema:affiliation grid-institutes:grid.21107.35
121 schema:familyName Chen
122 schema:givenName M. W.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19
124 rdf:type schema:Person
125 sg:person.015733526003.98 schema:affiliation grid-institutes:grid.21107.35
126 schema:familyName Glynn
127 schema:givenName M. L.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733526003.98
129 rdf:type schema:Person
130 sg:pub.10.1007/s11661-003-0293-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053473214
131 https://doi.org/10.1007/s11661-003-0293-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11661-999-0332-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009020020
134 https://doi.org/10.1007/s11661-999-0332-1
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.21107.35 schema:alternateName the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD
137 schema:name the Department of Mechanical Engineering, Johns Hopkins University, 212818, Baltimore, MD
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...