Cellular-to-dendritic transition during the directional solidification of binary alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-02

AUTHORS

R. Trivedi, Yunzue Shen, Shan Liu

ABSTRACT

The transition from a cellular to dendritic microstructure during the directional solidification of alloys is examined through experiments in a transparent system of succinonitrile (SCN)-salol. In a cellular array, a strong coupling of solute fields exists between the neighboring cells, which leads not only to multiple solutions of primary spacing, but also includes multiple solutions of amplitude, tip radius, and shape of the cell. It is found that these multiple solutions of different microstructural features in a cellular array, obtained under fixed growth conditions and compositions, play a key role in the cell-dendrite transition (CDT). The CDT is controlled not only by the input parameters of alloy composition (C0), growth rate (V), and thermal gradient (G), but also by microstructure parameters such as the local primary spacing. It is shown that the CDT is not sharp, but occurs over a range of growth conditions characterized by the minimum and maximum values of V/G. Within this transition range, a critical spacing is observed above which a cell transforms to a dendrite. This critical spacing is given by the geometric mean of the thermal, diffusion, and capillary lengths and is inversely proportional to composition in weight percent. More... »

PAGES

395-401

References to SciGraph publications

  • 1984-06-01. Interdendritic Spacing: Part I. Experimental Studies in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-06-01. Interdendritic Spacing: Part II. A Comparison of Theory and Experiment in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-01. Cellular-dendritic transition in directionally solidified binary alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-03. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-003-0340-5

    DOI

    http://dx.doi.org/10.1007/s11661-003-0340-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017977916


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ames Laboratory, United States Department of Energy, and Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Ames Laboratory, United States Department of Energy, and Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trivedi", 
            "givenName": "R.", 
            "id": "sg:person.01125404132.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Yunzue", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Shan", 
            "id": "sg:person.015313245113.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02646238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052579228", 
              "https://doi.org/10.1007/bf02646238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017285906", 
              "https://doi.org/10.1007/bf02648950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052306889", 
              "https://doi.org/10.1007/bf02644689"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-02", 
        "datePublishedReg": "2003-02-01", 
        "description": "The transition from a cellular to dendritic microstructure during the directional solidification of alloys is examined through experiments in a transparent system of succinonitrile (SCN)-salol. In a cellular array, a strong coupling of solute fields exists between the neighboring cells, which leads not only to multiple solutions of primary spacing, but also includes multiple solutions of amplitude, tip radius, and shape of the cell. It is found that these multiple solutions of different microstructural features in a cellular array, obtained under fixed growth conditions and compositions, play a key role in the cell-dendrite transition (CDT). The CDT is controlled not only by the input parameters of alloy composition (C0), growth rate (V), and thermal gradient (G), but also by microstructure parameters such as the local primary spacing. It is shown that the CDT is not sharp, but occurs over a range of growth conditions characterized by the minimum and maximum values of V/G. Within this transition range, a critical spacing is observed above which a cell transforms to a dendrite. This critical spacing is given by the geometric mean of the thermal, diffusion, and capillary lengths and is inversely proportional to composition in weight percent.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-003-0340-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "cell-dendrite transition", 
          "directional solidification", 
          "different microstructural features", 
          "dendritic microstructure", 
          "microstructural features", 
          "solute field", 
          "alloy composition", 
          "microstructure parameters", 
          "thermal gradient", 
          "primary spacing", 
          "binary alloys", 
          "tip radius", 
          "alloy", 
          "weight percent", 
          "dendritic transition", 
          "solidification", 
          "critical spacing", 
          "input parameters", 
          "transition range", 
          "maximum value", 
          "multiple solutions", 
          "spacing", 
          "capillary length", 
          "microstructure", 
          "transparent system", 
          "growth conditions", 
          "solution", 
          "array", 
          "cellular arrays", 
          "parameters", 
          "succinonitrile", 
          "strong coupling", 
          "conditions", 
          "diffusion", 
          "composition", 
          "range", 
          "gradient", 
          "growth rate", 
          "radius", 
          "shape", 
          "transition", 
          "field", 
          "amplitude", 
          "experiments", 
          "system", 
          "coupling", 
          "length", 
          "values", 
          "means", 
          "rate", 
          "dendrites", 
          "features", 
          "key role", 
          "cells", 
          "geometric mean", 
          "cellular", 
          "neighboring cells", 
          "percent", 
          "role", 
          "local primary spacing"
        ], 
        "name": "Cellular-to-dendritic transition during the directional solidification of binary alloys", 
        "pagination": "395-401", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017977916"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-003-0340-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-003-0340-5", 
          "https://app.dimensions.ai/details/publication/pub.1017977916"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_374.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-003-0340-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0340-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0340-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0340-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0340-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      22 PREDICATES      90 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-003-0340-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N5115ec9babe94ad09f8c520c9b66d3d8
    4 schema:citation sg:pub.10.1007/bf02644688
    5 sg:pub.10.1007/bf02644689
    6 sg:pub.10.1007/bf02646238
    7 sg:pub.10.1007/bf02648950
    8 schema:datePublished 2003-02
    9 schema:datePublishedReg 2003-02-01
    10 schema:description The transition from a cellular to dendritic microstructure during the directional solidification of alloys is examined through experiments in a transparent system of succinonitrile (SCN)-salol. In a cellular array, a strong coupling of solute fields exists between the neighboring cells, which leads not only to multiple solutions of primary spacing, but also includes multiple solutions of amplitude, tip radius, and shape of the cell. It is found that these multiple solutions of different microstructural features in a cellular array, obtained under fixed growth conditions and compositions, play a key role in the cell-dendrite transition (CDT). The CDT is controlled not only by the input parameters of alloy composition (C0), growth rate (V), and thermal gradient (G), but also by microstructure parameters such as the local primary spacing. It is shown that the CDT is not sharp, but occurs over a range of growth conditions characterized by the minimum and maximum values of V/G. Within this transition range, a critical spacing is observed above which a cell transforms to a dendrite. This critical spacing is given by the geometric mean of the thermal, diffusion, and capillary lengths and is inversely proportional to composition in weight percent.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N630d327235a244d58530dce577d43573
    15 N7013c09f3ea140859116e175bb8fe479
    16 sg:journal.1136292
    17 schema:keywords alloy
    18 alloy composition
    19 amplitude
    20 array
    21 binary alloys
    22 capillary length
    23 cell-dendrite transition
    24 cells
    25 cellular
    26 cellular arrays
    27 composition
    28 conditions
    29 coupling
    30 critical spacing
    31 dendrites
    32 dendritic microstructure
    33 dendritic transition
    34 different microstructural features
    35 diffusion
    36 directional solidification
    37 experiments
    38 features
    39 field
    40 geometric mean
    41 gradient
    42 growth conditions
    43 growth rate
    44 input parameters
    45 key role
    46 length
    47 local primary spacing
    48 maximum value
    49 means
    50 microstructural features
    51 microstructure
    52 microstructure parameters
    53 multiple solutions
    54 neighboring cells
    55 parameters
    56 percent
    57 primary spacing
    58 radius
    59 range
    60 rate
    61 role
    62 shape
    63 solidification
    64 solute field
    65 solution
    66 spacing
    67 strong coupling
    68 succinonitrile
    69 system
    70 thermal gradient
    71 tip radius
    72 transition
    73 transition range
    74 transparent system
    75 values
    76 weight percent
    77 schema:name Cellular-to-dendritic transition during the directional solidification of binary alloys
    78 schema:pagination 395-401
    79 schema:productId N022f20e366bc45419cae2d94c0ed1bf9
    80 N200885008a544fc6ae53b853285671c2
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017977916
    82 https://doi.org/10.1007/s11661-003-0340-5
    83 schema:sdDatePublished 2021-12-01T19:14
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N230b3b44316f48728f35e53a24f9f770
    86 schema:url https://doi.org/10.1007/s11661-003-0340-5
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N022f20e366bc45419cae2d94c0ed1bf9 schema:name doi
    91 schema:value 10.1007/s11661-003-0340-5
    92 rdf:type schema:PropertyValue
    93 N200885008a544fc6ae53b853285671c2 schema:name dimensions_id
    94 schema:value pub.1017977916
    95 rdf:type schema:PropertyValue
    96 N230b3b44316f48728f35e53a24f9f770 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N2dd9cea882e74fcab64f7eb77c7c4b8b rdf:first sg:person.015313245113.30
    99 rdf:rest rdf:nil
    100 N3c3fe010a8444ec8b2885fe3c44fd1b0 schema:affiliation grid-institutes:grid.34421.30
    101 schema:familyName Shen
    102 schema:givenName Yunzue
    103 rdf:type schema:Person
    104 N5115ec9babe94ad09f8c520c9b66d3d8 rdf:first sg:person.01125404132.43
    105 rdf:rest N7d120694d4b94b87b05ed4a62a7a6d0d
    106 N630d327235a244d58530dce577d43573 schema:volumeNumber 34
    107 rdf:type schema:PublicationVolume
    108 N7013c09f3ea140859116e175bb8fe479 schema:issueNumber 2
    109 rdf:type schema:PublicationIssue
    110 N7d120694d4b94b87b05ed4a62a7a6d0d rdf:first N3c3fe010a8444ec8b2885fe3c44fd1b0
    111 rdf:rest N2dd9cea882e74fcab64f7eb77c7c4b8b
    112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Engineering
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Materials Engineering
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1136292 schema:issn 1073-5623
    119 1543-1940
    120 schema:name Metallurgical and Materials Transactions A
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.01125404132.43 schema:affiliation grid-institutes:grid.34421.30
    124 schema:familyName Trivedi
    125 schema:givenName R.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43
    127 rdf:type schema:Person
    128 sg:person.015313245113.30 schema:affiliation grid-institutes:grid.34421.30
    129 schema:familyName Liu
    130 schema:givenName Shan
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf02644688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954572
    134 https://doi.org/10.1007/bf02644688
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02644689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052306889
    137 https://doi.org/10.1007/bf02644689
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02646238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052579228
    140 https://doi.org/10.1007/bf02646238
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02648950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017285906
    143 https://doi.org/10.1007/bf02648950
    144 rdf:type schema:CreativeWork
    145 grid-institutes:grid.34421.30 schema:alternateName Ames Laboratory, United States Department of Energy, and Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA
    146 Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA
    147 schema:name Ames Laboratory, United States Department of Energy, and Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA
    148 Department of Materials Science and Engineering, Iowa State University, 50011, Ames, IA
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...