Microstructural characterization of a platinum-modified diffusion aluminide bond coat for thermal barrier coatings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-10

AUTHORS

M. W. Chen, K. J. T. Livi, K. J. Hemker, P. K. Wright

ABSTRACT

Microstructural and chemical evolution induced by thermal cycling of a platinum-modified diffusion aluminide bond coat was investigated with transmission electron microscopy (TEM), X-ray diffraction, (XRD) and electron microprobe analysis. As-fabricated, the bond coat was confirmed to be an ordered B2 structure, but the underlying microstructure was found to be modulated. Thermal cycling resulted in a primarily outward diffusion of Ni and the formation of a Ni-rich bond coat containing secondary L12 precipitates. Closer inspection of the bond coat revealed a transformation from its original B2 structure to a L10 martensite. In-situ TEM observations indicated that the martensite is stable at lower temperatures and that the parent B2 structure reappears at higher temperatures. These observations can be used to explain the variations in strength that have recently been measured in thermally cycled bond coats. The resulting transformation strain is also argued to play an important role in determining the accumulation of stress and strain in thermally cycled thermal barrier coatings (TBCs). More... »

PAGES

2289-2299

References to SciGraph publications

  • 1999-10. Synthesis and cyclic oxidation behavior of a (Ni, Pt) Al coating on a desulfurized Ni-base superalloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1977-11. The aluminization of platinum and platinum-coated IN-738 in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-003-0293-8

    DOI

    http://dx.doi.org/10.1007/s11661-003-0293-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053473214


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, MD", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, MD"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "M. W.", 
            "id": "sg:person.015125211260.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Livi", 
            "givenName": "K. J. T.", 
            "id": "sg:person.016507321743.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507321743.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Mechanical Engineering, Materials Science and Engineering, and Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Departments of Mechanical Engineering, Materials Science and Engineering, and Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hemker", 
            "givenName": "K. J.", 
            "id": "sg:person.01225411302.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225411302.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GE-Aircraft Engines, Materials and Processes Engineering Department, 45215, Cincinnati, OH", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "GE-Aircraft Engines, Materials and Processes Engineering Department, 45215, Cincinnati, OH"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wright", 
            "givenName": "P. K.", 
            "id": "sg:person.0617237302.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617237302.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-999-0308-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035265250", 
              "https://doi.org/10.1007/s11661-999-0308-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02646872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024307835", 
              "https://doi.org/10.1007/bf02646872"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-10", 
        "datePublishedReg": "2003-10-01", 
        "description": "Microstructural and chemical evolution induced by thermal cycling of a platinum-modified diffusion aluminide bond coat was investigated with transmission electron microscopy (TEM), X-ray diffraction, (XRD) and electron microprobe analysis. As-fabricated, the bond coat was confirmed to be an ordered B2 structure, but the underlying microstructure was found to be modulated. Thermal cycling resulted in a primarily outward diffusion of Ni and the formation of a Ni-rich bond coat containing secondary L12 precipitates. Closer inspection of the bond coat revealed a transformation from its original B2 structure to a L10 martensite. In-situ TEM observations indicated that the martensite is stable at lower temperatures and that the parent B2 structure reappears at higher temperatures. These observations can be used to explain the variations in strength that have recently been measured in thermally cycled bond coats. The resulting transformation strain is also argued to play an important role in determining the accumulation of stress and strain in thermally cycled thermal barrier coatings (TBCs).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-003-0293-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "X-ray diffraction", 
          "transmission electron microscopy", 
          "aluminide bond coat", 
          "bond coat", 
          "diffusion aluminide bond coat", 
          "electron microprobe analysis", 
          "electron microscopy", 
          "accumulation of stress", 
          "barrier coatings", 
          "chemical evolution", 
          "thermal barrier coatings", 
          "outward diffusion", 
          "microprobe analysis", 
          "coatings", 
          "low temperature", 
          "B2 structure", 
          "TEM observations", 
          "situ TEM observations", 
          "structure", 
          "high temperature", 
          "diffraction", 
          "cycling", 
          "Ni", 
          "temperature", 
          "microscopy", 
          "microstructural characterization", 
          "characterization", 
          "formation", 
          "thermal cycling", 
          "diffusion", 
          "precipitates", 
          "coat", 
          "evolution", 
          "microstructure", 
          "closer inspection", 
          "variation", 
          "transformation", 
          "important role", 
          "accumulation", 
          "strength", 
          "underlying microstructure", 
          "observations", 
          "analysis", 
          "stress", 
          "role", 
          "strains", 
          "inspection", 
          "L10 martensite", 
          "transformation strain", 
          "L12 precipitates", 
          "martensite"
        ], 
        "name": "Microstructural characterization of a platinum-modified diffusion aluminide bond coat for thermal barrier coatings", 
        "pagination": "2289-2299", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053473214"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-003-0293-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-003-0293-8", 
          "https://app.dimensions.ai/details/publication/pub.1053473214"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_359.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-003-0293-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0293-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0293-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0293-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-003-0293-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      21 PREDICATES      81 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-003-0293-8 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 anzsrc-for:0913
    6 schema:author N2adf314594124dc7908968999044d647
    7 schema:citation sg:pub.10.1007/bf02646872
    8 sg:pub.10.1007/s11661-999-0308-1
    9 schema:datePublished 2003-10
    10 schema:datePublishedReg 2003-10-01
    11 schema:description Microstructural and chemical evolution induced by thermal cycling of a platinum-modified diffusion aluminide bond coat was investigated with transmission electron microscopy (TEM), X-ray diffraction, (XRD) and electron microprobe analysis. As-fabricated, the bond coat was confirmed to be an ordered B2 structure, but the underlying microstructure was found to be modulated. Thermal cycling resulted in a primarily outward diffusion of Ni and the formation of a Ni-rich bond coat containing secondary L12 precipitates. Closer inspection of the bond coat revealed a transformation from its original B2 structure to a L10 martensite. In-situ TEM observations indicated that the martensite is stable at lower temperatures and that the parent B2 structure reappears at higher temperatures. These observations can be used to explain the variations in strength that have recently been measured in thermally cycled bond coats. The resulting transformation strain is also argued to play an important role in determining the accumulation of stress and strain in thermally cycled thermal barrier coatings (TBCs).
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Na0e76cb290a5452d8a67661f4bded8b4
    15 Nd27de4e1d8c9442aac67d9a2b74dea9a
    16 sg:journal.1136292
    17 schema:keywords B2 structure
    18 L10 martensite
    19 L12 precipitates
    20 Ni
    21 TEM observations
    22 X-ray diffraction
    23 accumulation
    24 accumulation of stress
    25 aluminide bond coat
    26 analysis
    27 barrier coatings
    28 bond coat
    29 characterization
    30 chemical evolution
    31 closer inspection
    32 coat
    33 coatings
    34 cycling
    35 diffraction
    36 diffusion
    37 diffusion aluminide bond coat
    38 electron microprobe analysis
    39 electron microscopy
    40 evolution
    41 formation
    42 high temperature
    43 important role
    44 inspection
    45 low temperature
    46 martensite
    47 microprobe analysis
    48 microscopy
    49 microstructural characterization
    50 microstructure
    51 observations
    52 outward diffusion
    53 precipitates
    54 role
    55 situ TEM observations
    56 strains
    57 strength
    58 stress
    59 structure
    60 temperature
    61 thermal barrier coatings
    62 thermal cycling
    63 transformation
    64 transformation strain
    65 transmission electron microscopy
    66 underlying microstructure
    67 variation
    68 schema:name Microstructural characterization of a platinum-modified diffusion aluminide bond coat for thermal barrier coatings
    69 schema:pagination 2289-2299
    70 schema:productId N5607b48802814b269ca717b6750dd666
    71 N621c7a64de8246a28e2e3f4132a6db97
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053473214
    73 https://doi.org/10.1007/s11661-003-0293-8
    74 schema:sdDatePublished 2022-11-24T20:49
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Ne58ff1a3d73f4d0b86d45816743c0695
    77 schema:url https://doi.org/10.1007/s11661-003-0293-8
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N182d6b1b19fe4b75811b305cf282182d rdf:first sg:person.016507321743.82
    82 rdf:rest N7dc3d11b4f9e4cbbb63aed91f3bc104f
    83 N2adf314594124dc7908968999044d647 rdf:first sg:person.015125211260.19
    84 rdf:rest N182d6b1b19fe4b75811b305cf282182d
    85 N49a27ad84cb741708398090cc76ecf7c rdf:first sg:person.0617237302.26
    86 rdf:rest rdf:nil
    87 N5607b48802814b269ca717b6750dd666 schema:name dimensions_id
    88 schema:value pub.1053473214
    89 rdf:type schema:PropertyValue
    90 N621c7a64de8246a28e2e3f4132a6db97 schema:name doi
    91 schema:value 10.1007/s11661-003-0293-8
    92 rdf:type schema:PropertyValue
    93 N7dc3d11b4f9e4cbbb63aed91f3bc104f rdf:first sg:person.01225411302.11
    94 rdf:rest N49a27ad84cb741708398090cc76ecf7c
    95 Na0e76cb290a5452d8a67661f4bded8b4 schema:issueNumber 10
    96 rdf:type schema:PublicationIssue
    97 Nd27de4e1d8c9442aac67d9a2b74dea9a schema:volumeNumber 34
    98 rdf:type schema:PublicationVolume
    99 Ne58ff1a3d73f4d0b86d45816743c0695 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Chemical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Physical Chemistry (incl. Structural)
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Mechanical Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136292 schema:issn 1073-5623
    117 1543-1940
    118 schema:name Metallurgical and Materials Transactions A
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.01225411302.11 schema:affiliation grid-institutes:grid.21107.35
    122 schema:familyName Hemker
    123 schema:givenName K. J.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225411302.11
    125 rdf:type schema:Person
    126 sg:person.015125211260.19 schema:affiliation grid-institutes:grid.21107.35
    127 schema:familyName Chen
    128 schema:givenName M. W.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19
    130 rdf:type schema:Person
    131 sg:person.016507321743.82 schema:affiliation grid-institutes:grid.21107.35
    132 schema:familyName Livi
    133 schema:givenName K. J. T.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507321743.82
    135 rdf:type schema:Person
    136 sg:person.0617237302.26 schema:affiliation grid-institutes:None
    137 schema:familyName Wright
    138 schema:givenName P. K.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617237302.26
    140 rdf:type schema:Person
    141 sg:pub.10.1007/bf02646872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024307835
    142 https://doi.org/10.1007/bf02646872
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s11661-999-0308-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035265250
    145 https://doi.org/10.1007/s11661-999-0308-1
    146 rdf:type schema:CreativeWork
    147 grid-institutes:None schema:alternateName GE-Aircraft Engines, Materials and Processes Engineering Department, 45215, Cincinnati, OH
    148 schema:name GE-Aircraft Engines, Materials and Processes Engineering Department, 45215, Cincinnati, OH
    149 rdf:type schema:Organization
    150 grid-institutes:grid.21107.35 schema:alternateName Department of Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD
    151 Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, MD
    152 Departments of Mechanical Engineering, Materials Science and Engineering, and Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD
    153 schema:name Department of Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD
    154 Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, MD
    155 Departments of Mechanical Engineering, Materials Science and Engineering, and Earth and Planetary Sciences, Johns Hopkins University, 21218, Baltimore, MD
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...