Numerical simulation of Zn coating solidification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-08

AUTHORS

A. Sémoroz, L. Strezov, M. Rappaz

ABSTRACT

A numerical model, which simulates nucleation and growth of Zn grains, has been developed in order to describe quantitatively the solidification of Zn coatings during the hot-dipping process. The inputs of the model are the nucleation distribution, which has been measured by electron backscattered diffraction (EBSD), and the dendritic growth kinetics, calculated with an analytical model of a parabolic dendrite tip modified to account for the interactions with the coating interfaces. The model predicts the shapes of the grain envelopes as a function of the grain orientation and the texture induced by growth. Three types of grain envelopes have been evidenced, depending on the angle between the c-axis and the normal to the coating plane. Moreover, it has been shown that growth reinforces the already existing {00.1} nucleation texture, in good agreement with experimental data. The model also predicts the cooling curve, including recalescence, and the grain size. Thus, it is used to describe the effects of Pb additions on solidification. In particular, it has been shown that Pb increases the nucleation undercooling and strongly decreases the density of active nuclei, thus resulting in a much larger grain size. More... »

PAGES

2685-2694

References to SciGraph publications

  • 1994-03. 3-Dimensional simulation of the grain formation in investment castings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1990-06. Spangle formation in galvanized sheet steel coatings in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1989-02. Modeling of equiaxed microstructure formation in casting in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1998-02. Solidification and spangle formation of hot-dip-galvanized zinc coatings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1983-06. The Al−Zn (Aluminum-Zinc) system in BULLETIN OF ALLOY PHASE DIAGRAMS
  • 2002-08. Orientation domains and texture in hot-dipped galvanized coatings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1990-06. Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2000-02. Application of the phase-field method to the solidification of hot-dipped galvanized coatings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1990-01. Modeling of microsegregation under rapid solidification conditions in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-002-0390-0

    DOI

    http://dx.doi.org/10.1007/s11661-002-0390-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053049637


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Alstom Brown Strasse, 5400, Baden, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Alstom Brown Strasse, 5400, Baden, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00e9moroz", 
            "givenName": "A.", 
            "id": "sg:person.014350517627.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350517627.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Pyrometallurgy Group, BHP Billiton, Minerals Technology, Newcastle Technology Centre, NSW2287, Wallsend, Australia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "the Pyrometallurgy Group, BHP Billiton, Minerals Technology, Newcastle Technology Centre, NSW2287, Wallsend, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strezov", 
            "givenName": "L.", 
            "id": "sg:person.010576033222.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010576033222.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Institute of Materials, Faculty of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Institute of Materials, Faculty of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02672593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041382735", 
              "https://doi.org/10.1007/bf02672593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-998-0144-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051119972", 
              "https://doi.org/10.1007/s11661-998-0144-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001401248", 
              "https://doi.org/10.1007/bf02656445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-000-0284-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027168783", 
              "https://doi.org/10.1007/s11661-000-0284-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-002-0391-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029798677", 
              "https://doi.org/10.1007/s11661-002-0391-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02880321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047814563", 
              "https://doi.org/10.1007/bf02880321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001291895", 
              "https://doi.org/10.1007/bf02651604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040303849", 
              "https://doi.org/10.1007/bf02670257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030780509", 
              "https://doi.org/10.1007/bf02667868"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-08", 
        "datePublishedReg": "2002-08-01", 
        "description": "A numerical model, which simulates nucleation and growth of Zn grains, has been developed in order to describe quantitatively the solidification of Zn coatings during the hot-dipping process. The inputs of the model are the nucleation distribution, which has been measured by electron backscattered diffraction (EBSD), and the dendritic growth kinetics, calculated with an analytical model of a parabolic dendrite tip modified to account for the interactions with the coating interfaces. The model predicts the shapes of the grain envelopes as a function of the grain orientation and the texture induced by growth. Three types of grain envelopes have been evidenced, depending on the angle between the c-axis and the normal to the coating plane. Moreover, it has been shown that growth reinforces the already existing {00.1} nucleation texture, in good agreement with experimental data. The model also predicts the cooling curve, including recalescence, and the grain size. Thus, it is used to describe the effects of Pb additions on solidification. In particular, it has been shown that Pb increases the nucleation undercooling and strongly decreases the density of active nuclei, thus resulting in a much larger grain size.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-002-0390-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "grain envelopes", 
          "grain size", 
          "larger grain size", 
          "dendritic growth kinetics", 
          "coating interface", 
          "coating solidification", 
          "Zn grains", 
          "Zn coating", 
          "coating plane", 
          "numerical model", 
          "dipping process", 
          "grain orientation", 
          "nucleation texture", 
          "nucleation distribution", 
          "numerical simulations", 
          "solidification", 
          "analytical model", 
          "dendrite tip", 
          "experimental data", 
          "good agreement", 
          "growth kinetics", 
          "nucleation", 
          "Pb addition", 
          "coatings", 
          "c-axis", 
          "recalescence", 
          "texture", 
          "simulations", 
          "interface", 
          "model", 
          "diffraction", 
          "grains", 
          "envelope", 
          "size", 
          "angle", 
          "density", 
          "tip", 
          "shape", 
          "kinetics", 
          "plane", 
          "agreement", 
          "process", 
          "orientation", 
          "input", 
          "curves", 
          "order", 
          "distribution", 
          "growth", 
          "electrons", 
          "addition", 
          "effect", 
          "Pb", 
          "types", 
          "interaction", 
          "function", 
          "data", 
          "active nuclei", 
          "nucleus"
        ], 
        "name": "Numerical simulation of Zn coating solidification", 
        "pagination": "2685-2694", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053049637"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-002-0390-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-002-0390-0", 
          "https://app.dimensions.ai/details/publication/pub.1053049637"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_355.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-002-0390-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0390-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0390-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0390-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0390-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      92 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-002-0390-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne0dd01d66cbc417d93adec06f33c3b97
    4 schema:citation sg:pub.10.1007/bf02651604
    5 sg:pub.10.1007/bf02656445
    6 sg:pub.10.1007/bf02667868
    7 sg:pub.10.1007/bf02670257
    8 sg:pub.10.1007/bf02672593
    9 sg:pub.10.1007/bf02880321
    10 sg:pub.10.1007/s11661-000-0284-y
    11 sg:pub.10.1007/s11661-002-0391-z
    12 sg:pub.10.1007/s11661-998-0144-8
    13 schema:datePublished 2002-08
    14 schema:datePublishedReg 2002-08-01
    15 schema:description A numerical model, which simulates nucleation and growth of Zn grains, has been developed in order to describe quantitatively the solidification of Zn coatings during the hot-dipping process. The inputs of the model are the nucleation distribution, which has been measured by electron backscattered diffraction (EBSD), and the dendritic growth kinetics, calculated with an analytical model of a parabolic dendrite tip modified to account for the interactions with the coating interfaces. The model predicts the shapes of the grain envelopes as a function of the grain orientation and the texture induced by growth. Three types of grain envelopes have been evidenced, depending on the angle between the c-axis and the normal to the coating plane. Moreover, it has been shown that growth reinforces the already existing {00.1} nucleation texture, in good agreement with experimental data. The model also predicts the cooling curve, including recalescence, and the grain size. Thus, it is used to describe the effects of Pb additions on solidification. In particular, it has been shown that Pb increases the nucleation undercooling and strongly decreases the density of active nuclei, thus resulting in a much larger grain size.
    16 schema:genre article
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N33aac8bab8b1457cbf157d82908eab7b
    19 N81c9004465524228944abf73af0b9e2f
    20 sg:journal.1136292
    21 schema:keywords Pb
    22 Pb addition
    23 Zn coating
    24 Zn grains
    25 active nuclei
    26 addition
    27 agreement
    28 analytical model
    29 angle
    30 c-axis
    31 coating interface
    32 coating plane
    33 coating solidification
    34 coatings
    35 curves
    36 data
    37 dendrite tip
    38 dendritic growth kinetics
    39 density
    40 diffraction
    41 dipping process
    42 distribution
    43 effect
    44 electrons
    45 envelope
    46 experimental data
    47 function
    48 good agreement
    49 grain envelopes
    50 grain orientation
    51 grain size
    52 grains
    53 growth
    54 growth kinetics
    55 input
    56 interaction
    57 interface
    58 kinetics
    59 larger grain size
    60 model
    61 nucleation
    62 nucleation distribution
    63 nucleation texture
    64 nucleus
    65 numerical model
    66 numerical simulations
    67 order
    68 orientation
    69 plane
    70 process
    71 recalescence
    72 shape
    73 simulations
    74 size
    75 solidification
    76 texture
    77 tip
    78 types
    79 schema:name Numerical simulation of Zn coating solidification
    80 schema:pagination 2685-2694
    81 schema:productId N94daa5412800437aa52741aeb3151243
    82 Nae04109d2c864df6b1ba06aca2fa5759
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053049637
    84 https://doi.org/10.1007/s11661-002-0390-0
    85 schema:sdDatePublished 2022-12-01T06:23
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher Nb81863d12e024034965fd51d98300a39
    88 schema:url https://doi.org/10.1007/s11661-002-0390-0
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N33aac8bab8b1457cbf157d82908eab7b schema:volumeNumber 33
    93 rdf:type schema:PublicationVolume
    94 N6b6704d3b6904ea2ae915262005f2fa7 rdf:first sg:person.010576033222.84
    95 rdf:rest N7e82c4709c6a45509bd83117a3615c3e
    96 N7e82c4709c6a45509bd83117a3615c3e rdf:first sg:person.013657516157.10
    97 rdf:rest rdf:nil
    98 N81c9004465524228944abf73af0b9e2f schema:issueNumber 8
    99 rdf:type schema:PublicationIssue
    100 N94daa5412800437aa52741aeb3151243 schema:name doi
    101 schema:value 10.1007/s11661-002-0390-0
    102 rdf:type schema:PropertyValue
    103 Nae04109d2c864df6b1ba06aca2fa5759 schema:name dimensions_id
    104 schema:value pub.1053049637
    105 rdf:type schema:PropertyValue
    106 Nb81863d12e024034965fd51d98300a39 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Ne0dd01d66cbc417d93adec06f33c3b97 rdf:first sg:person.014350517627.66
    109 rdf:rest N6b6704d3b6904ea2ae915262005f2fa7
    110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Materials Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136292 schema:issn 1073-5623
    117 1543-1940
    118 schema:name Metallurgical and Materials Transactions A
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.010576033222.84 schema:affiliation grid-institutes:None
    122 schema:familyName Strezov
    123 schema:givenName L.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010576033222.84
    125 rdf:type schema:Person
    126 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    127 schema:familyName Rappaz
    128 schema:givenName M.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    130 rdf:type schema:Person
    131 sg:person.014350517627.66 schema:affiliation grid-institutes:None
    132 schema:familyName Sémoroz
    133 schema:givenName A.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350517627.66
    135 rdf:type schema:Person
    136 sg:pub.10.1007/bf02651604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291895
    137 https://doi.org/10.1007/bf02651604
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02656445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001401248
    140 https://doi.org/10.1007/bf02656445
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02667868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030780509
    143 https://doi.org/10.1007/bf02667868
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02670257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303849
    146 https://doi.org/10.1007/bf02670257
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02672593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041382735
    149 https://doi.org/10.1007/bf02672593
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02880321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047814563
    152 https://doi.org/10.1007/bf02880321
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s11661-000-0284-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027168783
    155 https://doi.org/10.1007/s11661-000-0284-y
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s11661-002-0391-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029798677
    158 https://doi.org/10.1007/s11661-002-0391-z
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11661-998-0144-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051119972
    161 https://doi.org/10.1007/s11661-998-0144-8
    162 rdf:type schema:CreativeWork
    163 grid-institutes:None schema:alternateName Alstom Brown Strasse, 5400, Baden, Switzerland
    164 the Pyrometallurgy Group, BHP Billiton, Minerals Technology, Newcastle Technology Centre, NSW2287, Wallsend, Australia
    165 schema:name Alstom Brown Strasse, 5400, Baden, Switzerland
    166 the Pyrometallurgy Group, BHP Billiton, Minerals Technology, Newcastle Technology Centre, NSW2287, Wallsend, Australia
    167 rdf:type schema:Organization
    168 grid-institutes:grid.5333.6 schema:alternateName the Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    169 schema:name the Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...