2002-08
AUTHORS ABSTRACTUnder carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus. More... »
PAGES2337-2345
http://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1
DOIhttp://dx.doi.org/10.1007/s11661-002-0357-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024739568
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mechanical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil",
"id": "http://www.grid.ac/institutes/grid.466806.a",
"name": [
"the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil"
],
"type": "Organization"
},
"familyName": "Lima",
"givenName": "Milton",
"id": "sg:person.012155730575.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155730575.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5333.6",
"name": [
"the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland"
],
"type": "Organization"
},
"familyName": "Kurz",
"givenName": "Wilfried",
"id": "sg:person.010017145423.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02644967",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052250525",
"https://doi.org/10.1007/bf02644967"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-009-4456-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001658689",
"https://doi.org/10.1007/978-94-009-4456-5_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02648954",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048636366",
"https://doi.org/10.1007/bf02648954"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02648951",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046553918",
"https://doi.org/10.1007/bf02648951"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02644964",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045681558",
"https://doi.org/10.1007/bf02644964"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-08",
"datePublishedReg": "2002-08-01",
"description": "Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 \u00b5m/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus.",
"genre": "article",
"id": "sg:pub.10.1007/s11661-002-0357-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "33"
}
],
"keywords": [
"absolute stability",
"low-velocity limit",
"nonequilibrium effects",
"local equilibrium",
"velocity limit",
"lower solvus temperature",
"low velocity range",
"kinetic undercooling",
"velocity range",
"isovelocity experiments",
"composition invariance",
"composition-invariant transformation",
"velocity",
"interface moves",
"high velocity",
"transformation front",
"solidification theory",
"invariance",
"plane front growth",
"solid-state transformation",
"theory",
"transformation",
"stability",
"modeling",
"limit",
"equilibrium",
"temperature",
"model",
"prediction",
"T0",
"conditions",
"front",
"system",
"phase transformation",
"stabilization",
"respect",
"iron system",
"diffusion transformation",
"ferrite",
"cases",
"growth velocity",
"experiments",
"results",
"transformation temperature",
"range",
"moves",
"undercooling",
"effect",
"Cr",
"Ni",
"rate",
"growth",
"massive transformation",
"solvus",
"solvus temperature",
"wt",
"high rate"
],
"name": "Massive transformation and absolute stability",
"pagination": "2337-2345",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024739568"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11661-002-0357-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11661-002-0357-1",
"https://app.dimensions.ai/details/publication/pub.1024739568"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_347.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11661-002-0357-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
22 PREDICATES
91 URIs
75 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11661-002-0357-1 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | ″ | anzsrc-for:0913 |
6 | ″ | schema:author | N6d727d8fe88a418b9d4fb8e41dd3e469 |
7 | ″ | schema:citation | sg:pub.10.1007/978-94-009-4456-5_5 |
8 | ″ | ″ | sg:pub.10.1007/bf02644964 |
9 | ″ | ″ | sg:pub.10.1007/bf02644967 |
10 | ″ | ″ | sg:pub.10.1007/bf02648951 |
11 | ″ | ″ | sg:pub.10.1007/bf02648954 |
12 | ″ | schema:datePublished | 2002-08 |
13 | ″ | schema:datePublishedReg | 2002-08-01 |
14 | ″ | schema:description | Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | false |
18 | ″ | schema:isPartOf | Na8f47a7d2f7140c78b433d84d4f40dad |
19 | ″ | ″ | Nf32e5c1814da4ef1aae8bfd97d58baf1 |
20 | ″ | ″ | sg:journal.1136292 |
21 | ″ | schema:keywords | Cr |
22 | ″ | ″ | Ni |
23 | ″ | ″ | T0 |
24 | ″ | ″ | absolute stability |
25 | ″ | ″ | cases |
26 | ″ | ″ | composition invariance |
27 | ″ | ″ | composition-invariant transformation |
28 | ″ | ″ | conditions |
29 | ″ | ″ | diffusion transformation |
30 | ″ | ″ | effect |
31 | ″ | ″ | equilibrium |
32 | ″ | ″ | experiments |
33 | ″ | ″ | ferrite |
34 | ″ | ″ | front |
35 | ″ | ″ | growth |
36 | ″ | ″ | growth velocity |
37 | ″ | ″ | high rate |
38 | ″ | ″ | high velocity |
39 | ″ | ″ | interface moves |
40 | ″ | ″ | invariance |
41 | ″ | ″ | iron system |
42 | ″ | ″ | isovelocity experiments |
43 | ″ | ″ | kinetic undercooling |
44 | ″ | ″ | limit |
45 | ″ | ″ | local equilibrium |
46 | ″ | ″ | low velocity range |
47 | ″ | ″ | low-velocity limit |
48 | ″ | ″ | lower solvus temperature |
49 | ″ | ″ | massive transformation |
50 | ″ | ″ | model |
51 | ″ | ″ | modeling |
52 | ″ | ″ | moves |
53 | ″ | ″ | nonequilibrium effects |
54 | ″ | ″ | phase transformation |
55 | ″ | ″ | plane front growth |
56 | ″ | ″ | prediction |
57 | ″ | ″ | range |
58 | ″ | ″ | rate |
59 | ″ | ″ | respect |
60 | ″ | ″ | results |
61 | ″ | ″ | solid-state transformation |
62 | ″ | ″ | solidification theory |
63 | ″ | ″ | solvus |
64 | ″ | ″ | solvus temperature |
65 | ″ | ″ | stability |
66 | ″ | ″ | stabilization |
67 | ″ | ″ | system |
68 | ″ | ″ | temperature |
69 | ″ | ″ | theory |
70 | ″ | ″ | transformation |
71 | ″ | ″ | transformation front |
72 | ″ | ″ | transformation temperature |
73 | ″ | ″ | undercooling |
74 | ″ | ″ | velocity |
75 | ″ | ″ | velocity limit |
76 | ″ | ″ | velocity range |
77 | ″ | ″ | wt |
78 | ″ | schema:name | Massive transformation and absolute stability |
79 | ″ | schema:pagination | 2337-2345 |
80 | ″ | schema:productId | N4266b210701d4a499896a3a0c5e616fb |
81 | ″ | ″ | N45a836d2250948e791d305f539630e82 |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024739568 |
83 | ″ | ″ | https://doi.org/10.1007/s11661-002-0357-1 |
84 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | Ne85945c6c9a342f2b0a0c5c6f8f8dbcd |
87 | ″ | schema:url | https://doi.org/10.1007/s11661-002-0357-1 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N26e888c2d5404af49b13f6f92d355c55 | rdf:first | sg:person.010017145423.41 |
92 | ″ | rdf:rest | rdf:nil |
93 | N4266b210701d4a499896a3a0c5e616fb | schema:name | doi |
94 | ″ | schema:value | 10.1007/s11661-002-0357-1 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | N45a836d2250948e791d305f539630e82 | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1024739568 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N6d727d8fe88a418b9d4fb8e41dd3e469 | rdf:first | sg:person.012155730575.08 |
100 | ″ | rdf:rest | N26e888c2d5404af49b13f6f92d355c55 |
101 | Na8f47a7d2f7140c78b433d84d4f40dad | schema:issueNumber | 8 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | Ne85945c6c9a342f2b0a0c5c6f8f8dbcd | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | Nf32e5c1814da4ef1aae8bfd97d58baf1 | schema:volumeNumber | 33 |
106 | ″ | rdf:type | schema:PublicationVolume |
107 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Chemical Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Physical Chemistry (incl. Structural) |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Engineering |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Materials Engineering |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0913 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Mechanical Engineering |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:journal.1136292 | schema:issn | 1073-5623 |
123 | ″ | ″ | 1543-1940 |
124 | ″ | schema:name | Metallurgical and Materials Transactions A |
125 | ″ | schema:publisher | Springer Nature |
126 | ″ | rdf:type | schema:Periodical |
127 | sg:person.010017145423.41 | schema:affiliation | grid-institutes:grid.5333.6 |
128 | ″ | schema:familyName | Kurz |
129 | ″ | schema:givenName | Wilfried |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.012155730575.08 | schema:affiliation | grid-institutes:grid.466806.a |
133 | ″ | schema:familyName | Lima |
134 | ″ | schema:givenName | Milton |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155730575.08 |
136 | ″ | rdf:type | schema:Person |
137 | sg:pub.10.1007/978-94-009-4456-5_5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001658689 |
138 | ″ | ″ | https://doi.org/10.1007/978-94-009-4456-5_5 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1007/bf02644964 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045681558 |
141 | ″ | ″ | https://doi.org/10.1007/bf02644964 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | sg:pub.10.1007/bf02644967 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052250525 |
144 | ″ | ″ | https://doi.org/10.1007/bf02644967 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1007/bf02648951 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046553918 |
147 | ″ | ″ | https://doi.org/10.1007/bf02648951 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1007/bf02648954 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048636366 |
150 | ″ | ″ | https://doi.org/10.1007/bf02648954 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | grid-institutes:grid.466806.a | schema:alternateName | the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil |
153 | ″ | schema:name | the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil |
154 | ″ | rdf:type | schema:Organization |
155 | grid-institutes:grid.5333.6 | schema:alternateName | the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland |
156 | ″ | schema:name | the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland |
157 | ″ | rdf:type | schema:Organization |