Massive transformation and absolute stability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-08

AUTHORS

Milton Lima, Wilfried Kurz

ABSTRACT

Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus. More... »

PAGES

2337-2345

References to SciGraph publications

  • 1984-03. Growth kinetics and mechanism of the massive transformation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-03. Interface attachment kinetics in alloy solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1986. Microstructure Formation in Rapidly Solidified Alloys in SCIENCE AND TECHNOLOGY OF THE UNDERCOOLED MELT
  • 1984-03. Thermodynamics of the massive transformation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-03. Banded solidification microstructures in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1

    DOI

    http://dx.doi.org/10.1007/s11661-002-0357-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024739568


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.466806.a", 
              "name": [
                "the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lima", 
            "givenName": "Milton", 
            "id": "sg:person.012155730575.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155730575.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "Wilfried", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02648954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048636366", 
              "https://doi.org/10.1007/bf02648954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-4456-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001658689", 
              "https://doi.org/10.1007/978-94-009-4456-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046553918", 
              "https://doi.org/10.1007/bf02648951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052250525", 
              "https://doi.org/10.1007/bf02644967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045681558", 
              "https://doi.org/10.1007/bf02644964"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-08", 
        "datePublishedReg": "2002-08-01", 
        "description": "Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 \u00b5m/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-002-0357-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "plane-front growth", 
          "lower solvus temperature", 
          "low velocity range", 
          "solidification theory", 
          "solvus temperature", 
          "phase transformation", 
          "transformation front", 
          "interface moves", 
          "transformation temperature", 
          "composition-invariant transformation", 
          "velocity range", 
          "diffusion transformation", 
          "solid-state transformation", 
          "low velocity limit", 
          "high velocity", 
          "kinetic undercooling", 
          "massive transformation", 
          "local equilibrium", 
          "velocity limit", 
          "nonequilibrium effects", 
          "temperature", 
          "iron system", 
          "velocity", 
          "stability", 
          "Fe-3.1", 
          "absolute stability", 
          "ferrite", 
          "undercooling", 
          "composition invariance", 
          "growth velocity", 
          "conditions", 
          "Ni", 
          "solvus", 
          "modeling", 
          "front", 
          "transformation", 
          "prediction", 
          "limit", 
          "Cr", 
          "experiments", 
          "range", 
          "system", 
          "model", 
          "results", 
          "stabilization", 
          "equilibrium", 
          "effect", 
          "rate", 
          "respect", 
          "T0", 
          "theory", 
          "growth", 
          "moves", 
          "cases", 
          "high rate", 
          "invariance", 
          "composition-invariant diffusion transformations", 
          "isovelocity experiments", 
          "planar transformation front", 
          "natural lower velocity limit", 
          "steady-state plane-front growth", 
          "transformation interface moves", 
          "atom attachment kinetic undercooling", 
          "attachment kinetic undercooling", 
          "lower solvus"
        ], 
        "name": "Massive transformation and absolute stability", 
        "pagination": "2337-2345", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024739568"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-002-0357-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-002-0357-1", 
          "https://app.dimensions.ai/details/publication/pub.1024739568"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_349.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-002-0357-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      22 PREDICATES      99 URIs      83 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-002-0357-1 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 anzsrc-for:0913
    6 schema:author N908206ae97ae44e1b8d3fbaa979398d5
    7 schema:citation sg:pub.10.1007/978-94-009-4456-5_5
    8 sg:pub.10.1007/bf02644964
    9 sg:pub.10.1007/bf02644967
    10 sg:pub.10.1007/bf02648951
    11 sg:pub.10.1007/bf02648954
    12 schema:datePublished 2002-08
    13 schema:datePublishedReg 2002-08-01
    14 schema:description Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N05748b1a2235423fb307c200f37c7c04
    19 N9fde3e655c5b42f4aca9ce79c05940a6
    20 sg:journal.1136292
    21 schema:keywords Cr
    22 Fe-3.1
    23 Ni
    24 T0
    25 absolute stability
    26 atom attachment kinetic undercooling
    27 attachment kinetic undercooling
    28 cases
    29 composition invariance
    30 composition-invariant diffusion transformations
    31 composition-invariant transformation
    32 conditions
    33 diffusion transformation
    34 effect
    35 equilibrium
    36 experiments
    37 ferrite
    38 front
    39 growth
    40 growth velocity
    41 high rate
    42 high velocity
    43 interface moves
    44 invariance
    45 iron system
    46 isovelocity experiments
    47 kinetic undercooling
    48 limit
    49 local equilibrium
    50 low velocity limit
    51 low velocity range
    52 lower solvus
    53 lower solvus temperature
    54 massive transformation
    55 model
    56 modeling
    57 moves
    58 natural lower velocity limit
    59 nonequilibrium effects
    60 phase transformation
    61 planar transformation front
    62 plane-front growth
    63 prediction
    64 range
    65 rate
    66 respect
    67 results
    68 solid-state transformation
    69 solidification theory
    70 solvus
    71 solvus temperature
    72 stability
    73 stabilization
    74 steady-state plane-front growth
    75 system
    76 temperature
    77 theory
    78 transformation
    79 transformation front
    80 transformation interface moves
    81 transformation temperature
    82 undercooling
    83 velocity
    84 velocity limit
    85 velocity range
    86 schema:name Massive transformation and absolute stability
    87 schema:pagination 2337-2345
    88 schema:productId N03a87f175c9442ea931c0504c2428866
    89 N105264920dc14469b2ea17c6e14b96d2
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739568
    91 https://doi.org/10.1007/s11661-002-0357-1
    92 schema:sdDatePublished 2022-01-01T18:11
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Nadd03a42f138416584029ebb742c0646
    95 schema:url https://doi.org/10.1007/s11661-002-0357-1
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N03a87f175c9442ea931c0504c2428866 schema:name doi
    100 schema:value 10.1007/s11661-002-0357-1
    101 rdf:type schema:PropertyValue
    102 N05748b1a2235423fb307c200f37c7c04 schema:issueNumber 8
    103 rdf:type schema:PublicationIssue
    104 N105264920dc14469b2ea17c6e14b96d2 schema:name dimensions_id
    105 schema:value pub.1024739568
    106 rdf:type schema:PropertyValue
    107 N5e8313920eb048ef92d08cb18713765b rdf:first sg:person.010017145423.41
    108 rdf:rest rdf:nil
    109 N908206ae97ae44e1b8d3fbaa979398d5 rdf:first sg:person.012155730575.08
    110 rdf:rest N5e8313920eb048ef92d08cb18713765b
    111 N9fde3e655c5b42f4aca9ce79c05940a6 schema:volumeNumber 33
    112 rdf:type schema:PublicationVolume
    113 Nadd03a42f138416584029ebb742c0646 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Chemical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Physical Chemistry (incl. Structural)
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Engineering
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Materials Engineering
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Mechanical Engineering
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1136292 schema:issn 1073-5623
    131 1543-1940
    132 schema:name Metallurgical and Materials Transactions A
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    136 schema:familyName Kurz
    137 schema:givenName Wilfried
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    139 rdf:type schema:Person
    140 sg:person.012155730575.08 schema:affiliation grid-institutes:grid.466806.a
    141 schema:familyName Lima
    142 schema:givenName Milton
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155730575.08
    144 rdf:type schema:Person
    145 sg:pub.10.1007/978-94-009-4456-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001658689
    146 https://doi.org/10.1007/978-94-009-4456-5_5
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02644964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045681558
    149 https://doi.org/10.1007/bf02644964
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02644967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250525
    152 https://doi.org/10.1007/bf02644967
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02648951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046553918
    155 https://doi.org/10.1007/bf02648951
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf02648954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048636366
    158 https://doi.org/10.1007/bf02648954
    159 rdf:type schema:CreativeWork
    160 grid-institutes:grid.466806.a schema:alternateName the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil
    161 schema:name the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil
    162 rdf:type schema:Organization
    163 grid-institutes:grid.5333.6 schema:alternateName the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland
    164 schema:name the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...