Massive transformation and absolute stability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-08

AUTHORS

Milton Lima, Wilfried Kurz

ABSTRACT

Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus. More... »

PAGES

2337-2345

References to SciGraph publications

  • 1984-03. Growth kinetics and mechanism of the massive transformation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-03. Interface attachment kinetics in alloy solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1986. Microstructure Formation in Rapidly Solidified Alloys in SCIENCE AND TECHNOLOGY OF THE UNDERCOOLED MELT
  • 1984-03. Thermodynamics of the massive transformation in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-03. Banded solidification microstructures in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1

    DOI

    http://dx.doi.org/10.1007/s11661-002-0357-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024739568


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.466806.a", 
              "name": [
                "the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lima", 
            "givenName": "Milton", 
            "id": "sg:person.012155730575.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155730575.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurz", 
            "givenName": "Wilfried", 
            "id": "sg:person.010017145423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02644967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052250525", 
              "https://doi.org/10.1007/bf02644967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-4456-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001658689", 
              "https://doi.org/10.1007/978-94-009-4456-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048636366", 
              "https://doi.org/10.1007/bf02648954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046553918", 
              "https://doi.org/10.1007/bf02648951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045681558", 
              "https://doi.org/10.1007/bf02644964"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-08", 
        "datePublishedReg": "2002-08-01", 
        "description": "Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 \u00b5m/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-002-0357-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "absolute stability", 
          "low-velocity limit", 
          "nonequilibrium effects", 
          "local equilibrium", 
          "velocity limit", 
          "lower solvus temperature", 
          "low velocity range", 
          "kinetic undercooling", 
          "velocity range", 
          "isovelocity experiments", 
          "composition invariance", 
          "composition-invariant transformation", 
          "velocity", 
          "interface moves", 
          "high velocity", 
          "transformation front", 
          "solidification theory", 
          "invariance", 
          "plane front growth", 
          "solid-state transformation", 
          "theory", 
          "transformation", 
          "stability", 
          "modeling", 
          "limit", 
          "equilibrium", 
          "temperature", 
          "model", 
          "prediction", 
          "T0", 
          "conditions", 
          "front", 
          "system", 
          "phase transformation", 
          "stabilization", 
          "respect", 
          "iron system", 
          "diffusion transformation", 
          "ferrite", 
          "cases", 
          "growth velocity", 
          "experiments", 
          "results", 
          "transformation temperature", 
          "range", 
          "moves", 
          "undercooling", 
          "effect", 
          "Cr", 
          "Ni", 
          "rate", 
          "growth", 
          "massive transformation", 
          "solvus", 
          "solvus temperature", 
          "wt", 
          "high rate"
        ], 
        "name": "Massive transformation and absolute stability", 
        "pagination": "2337-2345", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024739568"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-002-0357-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-002-0357-1", 
          "https://app.dimensions.ai/details/publication/pub.1024739568"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_347.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-002-0357-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-002-0357-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      22 PREDICATES      91 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-002-0357-1 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 anzsrc-for:0913
    6 schema:author N6d727d8fe88a418b9d4fb8e41dd3e469
    7 schema:citation sg:pub.10.1007/978-94-009-4456-5_5
    8 sg:pub.10.1007/bf02644964
    9 sg:pub.10.1007/bf02644967
    10 sg:pub.10.1007/bf02648951
    11 sg:pub.10.1007/bf02648954
    12 schema:datePublished 2002-08
    13 schema:datePublishedReg 2002-08-01
    14 schema:description Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T0. In some cases, this temperature might even drop below the lower solvus.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf Na8f47a7d2f7140c78b433d84d4f40dad
    19 Nf32e5c1814da4ef1aae8bfd97d58baf1
    20 sg:journal.1136292
    21 schema:keywords Cr
    22 Ni
    23 T0
    24 absolute stability
    25 cases
    26 composition invariance
    27 composition-invariant transformation
    28 conditions
    29 diffusion transformation
    30 effect
    31 equilibrium
    32 experiments
    33 ferrite
    34 front
    35 growth
    36 growth velocity
    37 high rate
    38 high velocity
    39 interface moves
    40 invariance
    41 iron system
    42 isovelocity experiments
    43 kinetic undercooling
    44 limit
    45 local equilibrium
    46 low velocity range
    47 low-velocity limit
    48 lower solvus temperature
    49 massive transformation
    50 model
    51 modeling
    52 moves
    53 nonequilibrium effects
    54 phase transformation
    55 plane front growth
    56 prediction
    57 range
    58 rate
    59 respect
    60 results
    61 solid-state transformation
    62 solidification theory
    63 solvus
    64 solvus temperature
    65 stability
    66 stabilization
    67 system
    68 temperature
    69 theory
    70 transformation
    71 transformation front
    72 transformation temperature
    73 undercooling
    74 velocity
    75 velocity limit
    76 velocity range
    77 wt
    78 schema:name Massive transformation and absolute stability
    79 schema:pagination 2337-2345
    80 schema:productId N4266b210701d4a499896a3a0c5e616fb
    81 N45a836d2250948e791d305f539630e82
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739568
    83 https://doi.org/10.1007/s11661-002-0357-1
    84 schema:sdDatePublished 2022-05-20T07:21
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher Ne85945c6c9a342f2b0a0c5c6f8f8dbcd
    87 schema:url https://doi.org/10.1007/s11661-002-0357-1
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N26e888c2d5404af49b13f6f92d355c55 rdf:first sg:person.010017145423.41
    92 rdf:rest rdf:nil
    93 N4266b210701d4a499896a3a0c5e616fb schema:name doi
    94 schema:value 10.1007/s11661-002-0357-1
    95 rdf:type schema:PropertyValue
    96 N45a836d2250948e791d305f539630e82 schema:name dimensions_id
    97 schema:value pub.1024739568
    98 rdf:type schema:PropertyValue
    99 N6d727d8fe88a418b9d4fb8e41dd3e469 rdf:first sg:person.012155730575.08
    100 rdf:rest N26e888c2d5404af49b13f6f92d355c55
    101 Na8f47a7d2f7140c78b433d84d4f40dad schema:issueNumber 8
    102 rdf:type schema:PublicationIssue
    103 Ne85945c6c9a342f2b0a0c5c6f8f8dbcd schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nf32e5c1814da4ef1aae8bfd97d58baf1 schema:volumeNumber 33
    106 rdf:type schema:PublicationVolume
    107 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Chemical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Physical Chemistry (incl. Structural)
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Engineering
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Materials Engineering
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Mechanical Engineering
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1136292 schema:issn 1073-5623
    123 1543-1940
    124 schema:name Metallurgical and Materials Transactions A
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.010017145423.41 schema:affiliation grid-institutes:grid.5333.6
    128 schema:familyName Kurz
    129 schema:givenName Wilfried
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
    131 rdf:type schema:Person
    132 sg:person.012155730575.08 schema:affiliation grid-institutes:grid.466806.a
    133 schema:familyName Lima
    134 schema:givenName Milton
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155730575.08
    136 rdf:type schema:Person
    137 sg:pub.10.1007/978-94-009-4456-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001658689
    138 https://doi.org/10.1007/978-94-009-4456-5_5
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf02644964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045681558
    141 https://doi.org/10.1007/bf02644964
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf02644967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250525
    144 https://doi.org/10.1007/bf02644967
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf02648951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046553918
    147 https://doi.org/10.1007/bf02648951
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf02648954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048636366
    150 https://doi.org/10.1007/bf02648954
    151 rdf:type schema:CreativeWork
    152 grid-institutes:grid.466806.a schema:alternateName the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil
    153 schema:name the Center for Laser and Applications, IPEN, 05508-900, Sao Paulo, Brazil
    154 rdf:type schema:Organization
    155 grid-institutes:grid.5333.6 schema:alternateName the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland
    156 schema:name the Department of Materials, Swiss Federal Institute of Technology, Lausanne, 1015, Lausanne EPFL, Switzerland
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...