The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

T. S. Srivatsan, R. Annigeri

ABSTRACT

In this article, the quasi-static and cyclic fatigue fracture behavior of aluminum alloy 2014 discontinuously reinforced with fine particulates of aluminum oxide are presented and discussed. The discontinuous particulate-reinforced 2014 aluminum alloy was cyclically deformed under fully reversed, tension-compression loading over a range of strain amplitudes, well within the plastic domain of the engineering stress-strain curve, resulting in cyclic fatigue lives of less than 104 cycles. The influence of both ambient and elevated temperatures on cyclic stress and cyclic stress-strain response is highlighted. The underlying mechanisms governing the fracture mode during quasi-static and cyclic fatigue are discussed and rationalized in light of the concurrent and mutually interactive influences of intrinsic composite microstructural features, deformation characteristics of the metal matrix and reinforcement particulate, cyclic strain amplitude and resultant fatigue life, and test temperature. More... »

PAGES

959-974

References to SciGraph publications

  • 1985-06. Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-02. Fracture surface roughness as a gauge of fracture toughness: Aluminium-particulate SiC composites in JOURNAL OF MATERIALS SCIENCE
  • 1991-08. High-temperature discontinuously reinforced aluminum in JOM
  • 1975-04. Cavity formation from inclusions in ductile fracture in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1992-08. Effects of sic content on fatigue crack growth in in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-01. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites in JOURNAL OF MATERIALS SCIENCE
  • 1991-05. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1997-10. The fatigue response and fracture behavior of a spray atomized and deposited aluminum-silicon alloy in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1989-05. Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1984-01. Creep rupture of a silicon carbide reinforced aluminum composite in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1996-01. Microstructure, tensile properties and fracture behaviour of Al2O3 particulate-reinforced aluminium alloy metal matrix composites in JOURNAL OF MATERIALS SCIENCE
  • 1991-01. The effect of particulate SiC on fatigue crack growth in a cast-extruded aluminum alloy composite in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-01-12. Fracture characteristics of Al-4 pct Mg mechanically alloyed with SiC in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-05. Microstructural characterization of a silicon carbide whisker reinforced 2124 aluminium metal matrix composite in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-000-1014-1

    DOI

    http://dx.doi.org/10.1007/s11661-000-1014-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039666874


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivatsan", 
            "givenName": "T. S.", 
            "id": "sg:person.015440524245.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Engineering Science and Mechanics, Pennsylvania State University, 16802, University Park, PA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Engineering Science and Mechanics, Pennsylvania State University, 16802, University Park, PA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Annigeri", 
            "givenName": "R.", 
            "id": "sg:person.016145703407.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145703407.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03221100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002254798", 
              "https://doi.org/10.1007/bf03221100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00353120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019583821", 
              "https://doi.org/10.1007/bf00353120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03350952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026934252", 
              "https://doi.org/10.1007/bf03350952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02646016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000731714", 
              "https://doi.org/10.1007/bf02646016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01174071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051811232", 
              "https://doi.org/10.1007/bf01174071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02651656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014957691", 
              "https://doi.org/10.1007/bf02651656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01132381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011712061", 
              "https://doi.org/10.1007/bf01132381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-997-0060-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003924014", 
              "https://doi.org/10.1007/s11665-997-0060-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01107459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047981575", 
              "https://doi.org/10.1007/bf01107459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015711142", 
              "https://doi.org/10.1007/bf02672306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02811679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026468298", 
              "https://doi.org/10.1007/bf02811679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016011178", 
              "https://doi.org/10.1007/bf02661094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010530469", 
              "https://doi.org/10.1007/bf02644396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034811518", 
              "https://doi.org/10.1007/bf02647083"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-03", 
        "datePublishedReg": "2000-03-01", 
        "description": "In this article, the quasi-static and cyclic fatigue fracture behavior of aluminum alloy 2014 discontinuously reinforced with fine particulates of aluminum oxide are presented and discussed. The discontinuous particulate-reinforced 2014 aluminum alloy was cyclically deformed under fully reversed, tension-compression loading over a range of strain amplitudes, well within the plastic domain of the engineering stress-strain curve, resulting in cyclic fatigue lives of less than 104 cycles. The influence of both ambient and elevated temperatures on cyclic stress and cyclic stress-strain response is highlighted. The underlying mechanisms governing the fracture mode during quasi-static and cyclic fatigue are discussed and rationalized in light of the concurrent and mutually interactive influences of intrinsic composite microstructural features, deformation characteristics of the metal matrix and reinforcement particulate, cyclic strain amplitude and resultant fatigue life, and test temperature.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-000-1014-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "13", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "cyclic fatigue fracture behavior", 
          "fatigue fracture behavior", 
          "fracture behavior", 
          "aluminium alloy metal-matrix composites", 
          "cyclic fatigue", 
          "metal-matrix composites", 
          "tension-compression loading", 
          "cyclic stress-strain response", 
          "engineering stress-strain curves", 
          "stress-strain response", 
          "resultant fatigue life", 
          "aluminum alloy 2014", 
          "stress-strain curves", 
          "reinforcement particulates", 
          "aluminum alloy", 
          "fatigue life", 
          "alloy 2014", 
          "fracture mode", 
          "metal matrix", 
          "deformation characteristics", 
          "cyclic stress", 
          "microstructural features", 
          "strain amplitude", 
          "aluminum oxide", 
          "plastic domain", 
          "elevated temperatures", 
          "fine particulates", 
          "particulates", 
          "temperature", 
          "composites", 
          "alloy", 
          "fatigue", 
          "loading", 
          "behavior", 
          "interactive influence", 
          "oxide", 
          "influence", 
          "amplitude", 
          "matrix", 
          "stress", 
          "mode", 
          "characteristics", 
          "range", 
          "cycle", 
          "curves", 
          "features", 
          "mechanism", 
          "light", 
          "domain", 
          "response", 
          "life", 
          "article", 
          "intrinsic composite microstructural features", 
          "composite microstructural features", 
          "alloy metal-matrix composites"
        ], 
        "name": "The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites", 
        "pagination": "959-974", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039666874"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-000-1014-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-000-1014-1", 
          "https://app.dimensions.ai/details/publication/pub.1039666874"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_334.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-000-1014-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-1014-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-1014-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-1014-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-1014-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      22 PREDICATES      94 URIs      72 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-000-1014-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N22fcaa9941164ff2908f00c0e3ad5e00
    4 schema:citation sg:pub.10.1007/bf00353120
    5 sg:pub.10.1007/bf01107459
    6 sg:pub.10.1007/bf01132381
    7 sg:pub.10.1007/bf01174071
    8 sg:pub.10.1007/bf02644396
    9 sg:pub.10.1007/bf02646016
    10 sg:pub.10.1007/bf02647083
    11 sg:pub.10.1007/bf02651656
    12 sg:pub.10.1007/bf02661094
    13 sg:pub.10.1007/bf02672306
    14 sg:pub.10.1007/bf02811679
    15 sg:pub.10.1007/bf03221100
    16 sg:pub.10.1007/bf03350952
    17 sg:pub.10.1007/s11665-997-0060-x
    18 schema:datePublished 2000-03
    19 schema:datePublishedReg 2000-03-01
    20 schema:description In this article, the quasi-static and cyclic fatigue fracture behavior of aluminum alloy 2014 discontinuously reinforced with fine particulates of aluminum oxide are presented and discussed. The discontinuous particulate-reinforced 2014 aluminum alloy was cyclically deformed under fully reversed, tension-compression loading over a range of strain amplitudes, well within the plastic domain of the engineering stress-strain curve, resulting in cyclic fatigue lives of less than 104 cycles. The influence of both ambient and elevated temperatures on cyclic stress and cyclic stress-strain response is highlighted. The underlying mechanisms governing the fracture mode during quasi-static and cyclic fatigue are discussed and rationalized in light of the concurrent and mutually interactive influences of intrinsic composite microstructural features, deformation characteristics of the metal matrix and reinforcement particulate, cyclic strain amplitude and resultant fatigue life, and test temperature.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N6491544aabd748ec80102a6353dd8080
    25 Na3021da3e2f2419b8dfe5840d2f048d1
    26 sg:journal.1136292
    27 schema:keywords alloy
    28 alloy 2014
    29 alloy metal-matrix composites
    30 aluminium alloy metal-matrix composites
    31 aluminum alloy
    32 aluminum alloy 2014
    33 aluminum oxide
    34 amplitude
    35 article
    36 behavior
    37 characteristics
    38 composite microstructural features
    39 composites
    40 curves
    41 cycle
    42 cyclic fatigue
    43 cyclic fatigue fracture behavior
    44 cyclic stress
    45 cyclic stress-strain response
    46 deformation characteristics
    47 domain
    48 elevated temperatures
    49 engineering stress-strain curves
    50 fatigue
    51 fatigue fracture behavior
    52 fatigue life
    53 features
    54 fine particulates
    55 fracture behavior
    56 fracture mode
    57 influence
    58 interactive influence
    59 intrinsic composite microstructural features
    60 life
    61 light
    62 loading
    63 matrix
    64 mechanism
    65 metal matrix
    66 metal-matrix composites
    67 microstructural features
    68 mode
    69 oxide
    70 particulates
    71 plastic domain
    72 range
    73 reinforcement particulates
    74 response
    75 resultant fatigue life
    76 strain amplitude
    77 stress
    78 stress-strain curves
    79 stress-strain response
    80 temperature
    81 tension-compression loading
    82 schema:name The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites
    83 schema:pagination 959-974
    84 schema:productId Nce18d75c035a47f9ae2f2932b0580338
    85 Ne624623f0abd4551a0414bc1dc40c18d
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039666874
    87 https://doi.org/10.1007/s11661-000-1014-1
    88 schema:sdDatePublished 2021-11-01T18:04
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Ndb83e3084a9b4a82990ab3b342e5435b
    91 schema:url https://doi.org/10.1007/s11661-000-1014-1
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N22fcaa9941164ff2908f00c0e3ad5e00 rdf:first sg:person.015440524245.80
    96 rdf:rest N4c648131544c413198690cf7952b233f
    97 N4c648131544c413198690cf7952b233f rdf:first sg:person.016145703407.89
    98 rdf:rest rdf:nil
    99 N6491544aabd748ec80102a6353dd8080 schema:volumeNumber 31
    100 rdf:type schema:PublicationVolume
    101 Na3021da3e2f2419b8dfe5840d2f048d1 schema:issueNumber 13
    102 rdf:type schema:PublicationIssue
    103 Nce18d75c035a47f9ae2f2932b0580338 schema:name doi
    104 schema:value 10.1007/s11661-000-1014-1
    105 rdf:type schema:PropertyValue
    106 Ndb83e3084a9b4a82990ab3b342e5435b schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Ne624623f0abd4551a0414bc1dc40c18d schema:name dimensions_id
    109 schema:value pub.1039666874
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Materials Engineering
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1136292 schema:issn 1073-5623
    118 1543-1940
    119 schema:name Metallurgical and Materials Transactions A
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
    123 schema:familyName Srivatsan
    124 schema:givenName T. S.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
    126 rdf:type schema:Person
    127 sg:person.016145703407.89 schema:affiliation grid-institutes:grid.29857.31
    128 schema:familyName Annigeri
    129 schema:givenName R.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145703407.89
    131 rdf:type schema:Person
    132 sg:pub.10.1007/bf00353120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019583821
    133 https://doi.org/10.1007/bf00353120
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf01107459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047981575
    136 https://doi.org/10.1007/bf01107459
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf01132381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011712061
    139 https://doi.org/10.1007/bf01132381
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf01174071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811232
    142 https://doi.org/10.1007/bf01174071
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf02644396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010530469
    145 https://doi.org/10.1007/bf02644396
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02646016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000731714
    148 https://doi.org/10.1007/bf02646016
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02647083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034811518
    151 https://doi.org/10.1007/bf02647083
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02651656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014957691
    154 https://doi.org/10.1007/bf02651656
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf02661094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016011178
    157 https://doi.org/10.1007/bf02661094
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02672306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015711142
    160 https://doi.org/10.1007/bf02672306
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf02811679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026468298
    163 https://doi.org/10.1007/bf02811679
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf03221100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002254798
    166 https://doi.org/10.1007/bf03221100
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf03350952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026934252
    169 https://doi.org/10.1007/bf03350952
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11665-997-0060-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003924014
    172 https://doi.org/10.1007/s11665-997-0060-x
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH
    175 schema:name Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH
    176 rdf:type schema:Organization
    177 grid-institutes:grid.29857.31 schema:alternateName Department of Engineering Science and Mechanics, Pennsylvania State University, 16802, University Park, PA
    178 schema:name Department of Engineering Science and Mechanics, Pennsylvania State University, 16802, University Park, PA
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...