Application of the phase-field method to the solidification of hot-dipped galvanized coatings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-02

AUTHORS

A. Semoroz, M. Rappaz, S. Henry

ABSTRACT

The growth of dendrites during the solidification of thin metallic films has been modeled using the phase-field method, with appropriate boundary conditions to take into account wetting effects. The model was applied to the growth of zinc dendrites during the solidification of hot-dipped coatings of steel, and the simulation results were compared to recent experimental observations of Strutzenberger and Faderl. It has been found that the presence of a boundary modifies the usual crystallographic growth directions of the dendrite arms as well as their growth velocity. In the case of hcp zinc dendrites in galvanized coatings, wetting effects at the boundary decrease the growth velocity as the inclination angle of the basal plane increases. This model also shows that shiny regions of the coating, characterized by a low density of lead particles and a smooth surface, result from the growth of the dendrite along the outer surface, while dimpled regions, characterized by a high density of lead particles and a rough surface, are due to the growth of the dendrite along the steel substrate. More... »

PAGES

487-495

References to SciGraph publications

  • 1990-06. Spangle formation in galvanized sheet steel coatings in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1998-02. Solidification and spangle formation of hot-dip-galvanized zinc coatings in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11661-000-0284-y

    DOI

    http://dx.doi.org/10.1007/s11661-000-0284-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027168783


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "the Laboratoire de Metallurgie Physique, Department des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratoire de Metallurgie Physique, Department des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Semoroz", 
            "givenName": "A.", 
            "id": "sg:person.014350517627.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350517627.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "the Laboratoire de Metallurgie Physique, Department des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "the Laboratoire de Metallurgie Physique, Department des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pechiney Centre de Recherches de Voreppe, F-38341, Voreppe, Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Pechiney Centre de Recherches de Voreppe, F-38341, Voreppe, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henry", 
            "givenName": "S.", 
            "id": "sg:person.01067574734.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067574734.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02667868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030780509", 
              "https://doi.org/10.1007/bf02667868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-998-0144-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051119972", 
              "https://doi.org/10.1007/s11661-998-0144-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-02", 
        "datePublishedReg": "2000-02-01", 
        "description": "The growth of dendrites during the solidification of thin metallic films has been modeled using the phase-field method, with appropriate boundary conditions to take into account wetting effects. The model was applied to the growth of zinc dendrites during the solidification of hot-dipped coatings of steel, and the simulation results were compared to recent experimental observations of Strutzenberger and Faderl. It has been found that the presence of a boundary modifies the usual crystallographic growth directions of the dendrite arms as well as their growth velocity. In the case of hcp zinc dendrites in galvanized coatings, wetting effects at the boundary decrease the growth velocity as the inclination angle of the basal plane increases. This model also shows that shiny regions of the coating, characterized by a low density of lead particles and a smooth surface, result from the growth of the dendrite along the outer surface, while dimpled regions, characterized by a high density of lead particles and a rough surface, are due to the growth of the dendrite along the steel substrate.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11661-000-0284-y", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "phase-field method", 
          "galvanized coatings", 
          "coating of steel", 
          "lead particles", 
          "thin metallic films", 
          "appropriate boundary conditions", 
          "steel substrate", 
          "crystallographic growth directions", 
          "shiny regions", 
          "dendrite arms", 
          "growth of dendrites", 
          "metallic films", 
          "coatings", 
          "basal plane increases", 
          "zinc dendrites", 
          "wetting effect", 
          "smooth surface", 
          "rough surface", 
          "solidification", 
          "inclination angle", 
          "hcp zinc", 
          "boundary conditions", 
          "simulation results", 
          "outer surface", 
          "growth direction", 
          "plane increases", 
          "experimental observations", 
          "surface", 
          "velocity", 
          "low density", 
          "particles", 
          "steel", 
          "high density", 
          "growth velocity", 
          "recent experimental observations", 
          "density", 
          "films", 
          "substrate", 
          "method", 
          "angle", 
          "model", 
          "applications", 
          "dendrites", 
          "direction", 
          "conditions", 
          "effect", 
          "growth", 
          "region", 
          "results", 
          "zinc", 
          "increase", 
          "observations", 
          "modifies", 
          "presence", 
          "arm", 
          "cases"
        ], 
        "name": "Application of the phase-field method to the solidification of hot-dipped galvanized coatings", 
        "pagination": "487-495", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027168783"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11661-000-0284-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11661-000-0284-y", 
          "https://app.dimensions.ai/details/publication/pub.1027168783"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_306.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11661-000-0284-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0284-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0284-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0284-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0284-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    138 TRIPLES      21 PREDICATES      83 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11661-000-0284-y schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N719574f029714660a2a779bfbe6c393d
    4 schema:citation sg:pub.10.1007/bf02667868
    5 sg:pub.10.1007/s11661-998-0144-8
    6 schema:datePublished 2000-02
    7 schema:datePublishedReg 2000-02-01
    8 schema:description The growth of dendrites during the solidification of thin metallic films has been modeled using the phase-field method, with appropriate boundary conditions to take into account wetting effects. The model was applied to the growth of zinc dendrites during the solidification of hot-dipped coatings of steel, and the simulation results were compared to recent experimental observations of Strutzenberger and Faderl. It has been found that the presence of a boundary modifies the usual crystallographic growth directions of the dendrite arms as well as their growth velocity. In the case of hcp zinc dendrites in galvanized coatings, wetting effects at the boundary decrease the growth velocity as the inclination angle of the basal plane increases. This model also shows that shiny regions of the coating, characterized by a low density of lead particles and a smooth surface, result from the growth of the dendrite along the outer surface, while dimpled regions, characterized by a high density of lead particles and a rough surface, are due to the growth of the dendrite along the steel substrate.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N7e499ef5cf1d47889fee9d6065b83a4d
    12 N7ef103d5066c47d4aab70e5bfe1520b0
    13 sg:journal.1136292
    14 schema:keywords angle
    15 applications
    16 appropriate boundary conditions
    17 arm
    18 basal plane increases
    19 boundary conditions
    20 cases
    21 coating of steel
    22 coatings
    23 conditions
    24 crystallographic growth directions
    25 dendrite arms
    26 dendrites
    27 density
    28 direction
    29 effect
    30 experimental observations
    31 films
    32 galvanized coatings
    33 growth
    34 growth direction
    35 growth of dendrites
    36 growth velocity
    37 hcp zinc
    38 high density
    39 inclination angle
    40 increase
    41 lead particles
    42 low density
    43 metallic films
    44 method
    45 model
    46 modifies
    47 observations
    48 outer surface
    49 particles
    50 phase-field method
    51 plane increases
    52 presence
    53 recent experimental observations
    54 region
    55 results
    56 rough surface
    57 shiny regions
    58 simulation results
    59 smooth surface
    60 solidification
    61 steel
    62 steel substrate
    63 substrate
    64 surface
    65 thin metallic films
    66 velocity
    67 wetting effect
    68 zinc
    69 zinc dendrites
    70 schema:name Application of the phase-field method to the solidification of hot-dipped galvanized coatings
    71 schema:pagination 487-495
    72 schema:productId N3ce28adcf3fc4280b1b116c3dcd625ff
    73 N8b9cbd0bea8f4d479410dc33e8bffaf6
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027168783
    75 https://doi.org/10.1007/s11661-000-0284-y
    76 schema:sdDatePublished 2022-11-24T20:49
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N7473f7344a3744ee95a6bf89660ddf68
    79 schema:url https://doi.org/10.1007/s11661-000-0284-y
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N24a6c8d8c68f40d99d7f9d877fe76ee3 rdf:first sg:person.013657516157.10
    84 rdf:rest Ne36d47c2655b4ee08866ab33420a0602
    85 N3ce28adcf3fc4280b1b116c3dcd625ff schema:name dimensions_id
    86 schema:value pub.1027168783
    87 rdf:type schema:PropertyValue
    88 N719574f029714660a2a779bfbe6c393d rdf:first sg:person.014350517627.66
    89 rdf:rest N24a6c8d8c68f40d99d7f9d877fe76ee3
    90 N7473f7344a3744ee95a6bf89660ddf68 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N7e499ef5cf1d47889fee9d6065b83a4d schema:issueNumber 2
    93 rdf:type schema:PublicationIssue
    94 N7ef103d5066c47d4aab70e5bfe1520b0 schema:volumeNumber 31
    95 rdf:type schema:PublicationVolume
    96 N8b9cbd0bea8f4d479410dc33e8bffaf6 schema:name doi
    97 schema:value 10.1007/s11661-000-0284-y
    98 rdf:type schema:PropertyValue
    99 Ne36d47c2655b4ee08866ab33420a0602 rdf:first sg:person.01067574734.36
    100 rdf:rest rdf:nil
    101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Engineering
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Materials Engineering
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1136292 schema:issn 1073-5623
    108 1543-1940
    109 schema:name Metallurgical and Materials Transactions A
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.01067574734.36 schema:affiliation grid-institutes:None
    113 schema:familyName Henry
    114 schema:givenName S.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067574734.36
    116 rdf:type schema:Person
    117 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    118 schema:familyName Rappaz
    119 schema:givenName M.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    121 rdf:type schema:Person
    122 sg:person.014350517627.66 schema:affiliation grid-institutes:grid.5333.6
    123 schema:familyName Semoroz
    124 schema:givenName A.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350517627.66
    126 rdf:type schema:Person
    127 sg:pub.10.1007/bf02667868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030780509
    128 https://doi.org/10.1007/bf02667868
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s11661-998-0144-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051119972
    131 https://doi.org/10.1007/s11661-998-0144-8
    132 rdf:type schema:CreativeWork
    133 grid-institutes:None schema:alternateName Pechiney Centre de Recherches de Voreppe, F-38341, Voreppe, Cedex, France
    134 schema:name Pechiney Centre de Recherches de Voreppe, F-38341, Voreppe, Cedex, France
    135 rdf:type schema:Organization
    136 grid-institutes:grid.5333.6 schema:alternateName the Laboratoire de Metallurgie Physique, Department des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
    137 schema:name the Laboratoire de Metallurgie Physique, Department des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland
    138 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...